ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psr0lid Unicode version

Theorem psr0lid 14310
Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s  |-  S  =  ( I mPwSer  R )
psrgrp.i  |-  ( ph  ->  I  e.  V )
psrgrp.r  |-  ( ph  ->  R  e.  Grp )
psr0cl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psr0cl.o  |-  .0.  =  ( 0g `  R )
psr0cl.b  |-  B  =  ( Base `  S
)
psr0lid.p  |-  .+  =  ( +g  `  S )
psr0lid.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
psr0lid  |-  ( ph  ->  ( ( D  X.  {  .0.  } )  .+  X )  =  X )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    .+ ( f)    R( f)    S( f)    V( f)    X( f)    .0. ( f)

Proof of Theorem psr0lid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 psrgrp.s . . 3  |-  S  =  ( I mPwSer  R )
2 psr0cl.b . . 3  |-  B  =  ( Base `  S
)
3 eqid 2196 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 psr0lid.p . . 3  |-  .+  =  ( +g  `  S )
5 psrgrp.i . . . 4  |-  ( ph  ->  I  e.  V )
6 psrgrp.r . . . 4  |-  ( ph  ->  R  e.  Grp )
7 psr0cl.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
8 psr0cl.o . . . 4  |-  .0.  =  ( 0g `  R )
91, 5, 6, 7, 8, 2psr0cl 14309 . . 3  |-  ( ph  ->  ( D  X.  {  .0.  } )  e.  B
)
10 psr0lid.x . . 3  |-  ( ph  ->  X  e.  B )
111, 2, 3, 4, 9, 10psradd 14307 . 2  |-  ( ph  ->  ( ( D  X.  {  .0.  } )  .+  X )  =  ( ( D  X.  {  .0.  } )  oF ( +g  `  R
) X ) )
12 fnmap 6723 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
13 nn0ex 9272 . . . . 5  |-  NN0  e.  _V
145elexd 2776 . . . . 5  |-  ( ph  ->  I  e.  _V )
15 fnovex 5958 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  I  e. 
_V )  ->  ( NN0  ^m  I )  e. 
_V )
1612, 13, 14, 15mp3an12i 1352 . . . 4  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
177, 16rabexd 4179 . . 3  |-  ( ph  ->  D  e.  _V )
18 eqid 2196 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
191, 18, 7, 2, 10psrelbas 14304 . . 3  |-  ( ph  ->  X : D --> ( Base `  R ) )
2018, 8grpidcl 13231 . . . 4  |-  ( R  e.  Grp  ->  .0.  e.  ( Base `  R
) )
216, 20syl 14 . . 3  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
2218, 3, 8grplid 13233 . . . 4  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
(  .0.  ( +g  `  R ) x )  =  x )
236, 22sylan 283 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  (  .0.  ( +g  `  R ) x )  =  x )
2417, 19, 21, 23caofid0l 6166 . 2  |-  ( ph  ->  ( ( D  X.  {  .0.  } )  oF ( +g  `  R
) X )  =  X )
2511, 24eqtrd 2229 1  |-  ( ph  ->  ( ( D  X.  {  .0.  } )  .+  X )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763   {csn 3623    X. cxp 4662   `'ccnv 4663   "cima 4667    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    oFcof 6137    ^m cmap 6716   Fincfn 6808   NNcn 9007   NN0cn0 9266   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Grpcgrp 13202   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-tset 12799  df-rest 12943  df-topn 12944  df-0g 12960  df-topgen 12962  df-pt 12963  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-psr 14294
This theorem is referenced by:  psr0  14314
  Copyright terms: Public domain W3C validator