ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrlinv Unicode version

Theorem psrlinv 14656
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s  |-  S  =  ( I mPwSer  R )
psrgrp.i  |-  ( ph  ->  I  e.  V )
psrgrp.r  |-  ( ph  ->  R  e.  Grp )
psrnegcl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrnegcl.i  |-  N  =  ( invg `  R )
psrnegcl.b  |-  B  =  ( Base `  S
)
psrnegcl.z  |-  ( ph  ->  X  e.  B )
psrlinv.o  |-  .0.  =  ( 0g `  R )
psrlinv.p  |-  .+  =  ( +g  `  S )
Assertion
Ref Expression
psrlinv  |-  ( ph  ->  ( ( N  o.  X )  .+  X
)  =  ( D  X.  {  .0.  }
) )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    .+ ( f)    R( f)    S( f)    N( f)    V( f)    X( f)    .0. ( f)

Proof of Theorem psrlinv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrnegcl.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
2 fnmap 6810 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 nn0ex 9383 . . . . 5  |-  NN0  e.  _V
4 psrgrp.i . . . . . 6  |-  ( ph  ->  I  e.  V )
54elexd 2813 . . . . 5  |-  ( ph  ->  I  e.  _V )
6 fnovex 6040 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  I  e. 
_V )  ->  ( NN0  ^m  I )  e. 
_V )
72, 3, 5, 6mp3an12i 1375 . . . 4  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
81, 7rabexd 4229 . . 3  |-  ( ph  ->  D  e.  _V )
9 psrgrp.r . . . 4  |-  ( ph  ->  R  e.  Grp )
10 psrgrp.s . . . . . 6  |-  S  =  ( I mPwSer  R )
11 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
12 psrnegcl.b . . . . . 6  |-  B  =  ( Base `  S
)
13 psrnegcl.z . . . . . 6  |-  ( ph  ->  X  e.  B )
1410, 11, 1, 12, 13psrelbas 14647 . . . . 5  |-  ( ph  ->  X : D --> ( Base `  R ) )
1514ffvelcdmda 5772 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  ( X `  x )  e.  ( Base `  R
) )
16 psrnegcl.i . . . . 5  |-  N  =  ( invg `  R )
1711, 16grpinvcl 13589 . . . 4  |-  ( ( R  e.  Grp  /\  ( X `  x )  e.  ( Base `  R
) )  ->  ( N `  ( X `  x ) )  e.  ( Base `  R
) )
189, 15, 17syl2an2r 597 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( N `  ( X `  x ) )  e.  ( Base `  R
) )
1914feqmptd 5689 . . . 4  |-  ( ph  ->  X  =  ( x  e.  D  |->  ( X `
 x ) ) )
2011, 16, 9grpinvf1o 13611 . . . . . 6  |-  ( ph  ->  N : ( Base `  R ) -1-1-onto-> ( Base `  R
) )
21 f1of 5574 . . . . . 6  |-  ( N : ( Base `  R
)
-1-1-onto-> ( Base `  R )  ->  N : ( Base `  R ) --> ( Base `  R ) )
2220, 21syl 14 . . . . 5  |-  ( ph  ->  N : ( Base `  R ) --> ( Base `  R ) )
2322feqmptd 5689 . . . 4  |-  ( ph  ->  N  =  ( y  e.  ( Base `  R
)  |->  ( N `  y ) ) )
24 fveq2 5629 . . . 4  |-  ( y  =  ( X `  x )  ->  ( N `  y )  =  ( N `  ( X `  x ) ) )
2515, 19, 23, 24fmptco 5803 . . 3  |-  ( ph  ->  ( N  o.  X
)  =  ( x  e.  D  |->  ( N `
 ( X `  x ) ) ) )
268, 18, 15, 25, 19offval2 6240 . 2  |-  ( ph  ->  ( ( N  o.  X )  oF ( +g  `  R
) X )  =  ( x  e.  D  |->  ( ( N `  ( X `  x ) ) ( +g  `  R
) ( X `  x ) ) ) )
27 eqid 2229 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
28 psrlinv.p . . 3  |-  .+  =  ( +g  `  S )
2910, 4, 9, 1, 16, 12, 13psrnegcl 14655 . . 3  |-  ( ph  ->  ( N  o.  X
)  e.  B )
3010, 12, 27, 28, 29, 13psradd 14651 . 2  |-  ( ph  ->  ( ( N  o.  X )  .+  X
)  =  ( ( N  o.  X )  oF ( +g  `  R ) X ) )
31 fconstmpt 4766 . . 3  |-  ( D  X.  {  .0.  }
)  =  ( x  e.  D  |->  .0.  )
32 psrlinv.o . . . . . 6  |-  .0.  =  ( 0g `  R )
3311, 27, 32, 16grplinv 13591 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X `  x )  e.  ( Base `  R
) )  ->  (
( N `  ( X `  x )
) ( +g  `  R
) ( X `  x ) )  =  .0.  )
349, 15, 33syl2an2r 597 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( N `  ( X `  x )
) ( +g  `  R
) ( X `  x ) )  =  .0.  )
3534mpteq2dva 4174 . . 3  |-  ( ph  ->  ( x  e.  D  |->  ( ( N `  ( X `  x ) ) ( +g  `  R
) ( X `  x ) ) )  =  ( x  e.  D  |->  .0.  ) )
3631, 35eqtr4id 2281 . 2  |-  ( ph  ->  ( D  X.  {  .0.  } )  =  ( x  e.  D  |->  ( ( N `  ( X `  x )
) ( +g  `  R
) ( X `  x ) ) ) )
3726, 30, 363eqtr4d 2272 1  |-  ( ph  ->  ( ( N  o.  X )  .+  X
)  =  ( D  X.  {  .0.  }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   {csn 3666    |-> cmpt 4145    X. cxp 4717   `'ccnv 4718   "cima 4722    o. ccom 4723    Fn wfn 5313   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6007    oFcof 6222    ^m cmap 6803   Fincfn 6895   NNcn 9118   NN0cn0 9377   Basecbs 13040   +g cplusg 13118   0gc0g 13297   Grpcgrp 13541   invgcminusg 13542   mPwSer cmps 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-tset 13137  df-rest 13282  df-topn 13283  df-0g 13299  df-topgen 13301  df-pt 13302  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-psr 14635
This theorem is referenced by:  psrneg  14659
  Copyright terms: Public domain W3C validator