ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrlinv Unicode version

Theorem psrlinv 14613
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s  |-  S  =  ( I mPwSer  R )
psrgrp.i  |-  ( ph  ->  I  e.  V )
psrgrp.r  |-  ( ph  ->  R  e.  Grp )
psrnegcl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrnegcl.i  |-  N  =  ( invg `  R )
psrnegcl.b  |-  B  =  ( Base `  S
)
psrnegcl.z  |-  ( ph  ->  X  e.  B )
psrlinv.o  |-  .0.  =  ( 0g `  R )
psrlinv.p  |-  .+  =  ( +g  `  S )
Assertion
Ref Expression
psrlinv  |-  ( ph  ->  ( ( N  o.  X )  .+  X
)  =  ( D  X.  {  .0.  }
) )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    .+ ( f)    R( f)    S( f)    N( f)    V( f)    X( f)    .0. ( f)

Proof of Theorem psrlinv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrnegcl.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
2 fnmap 6772 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 nn0ex 9343 . . . . 5  |-  NN0  e.  _V
4 psrgrp.i . . . . . 6  |-  ( ph  ->  I  e.  V )
54elexd 2793 . . . . 5  |-  ( ph  ->  I  e.  _V )
6 fnovex 6007 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  I  e. 
_V )  ->  ( NN0  ^m  I )  e. 
_V )
72, 3, 5, 6mp3an12i 1356 . . . 4  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
81, 7rabexd 4208 . . 3  |-  ( ph  ->  D  e.  _V )
9 psrgrp.r . . . 4  |-  ( ph  ->  R  e.  Grp )
10 psrgrp.s . . . . . 6  |-  S  =  ( I mPwSer  R )
11 eqid 2209 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
12 psrnegcl.b . . . . . 6  |-  B  =  ( Base `  S
)
13 psrnegcl.z . . . . . 6  |-  ( ph  ->  X  e.  B )
1410, 11, 1, 12, 13psrelbas 14604 . . . . 5  |-  ( ph  ->  X : D --> ( Base `  R ) )
1514ffvelcdmda 5743 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  ( X `  x )  e.  ( Base `  R
) )
16 psrnegcl.i . . . . 5  |-  N  =  ( invg `  R )
1711, 16grpinvcl 13547 . . . 4  |-  ( ( R  e.  Grp  /\  ( X `  x )  e.  ( Base `  R
) )  ->  ( N `  ( X `  x ) )  e.  ( Base `  R
) )
189, 15, 17syl2an2r 597 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( N `  ( X `  x ) )  e.  ( Base `  R
) )
1914feqmptd 5660 . . . 4  |-  ( ph  ->  X  =  ( x  e.  D  |->  ( X `
 x ) ) )
2011, 16, 9grpinvf1o 13569 . . . . . 6  |-  ( ph  ->  N : ( Base `  R ) -1-1-onto-> ( Base `  R
) )
21 f1of 5548 . . . . . 6  |-  ( N : ( Base `  R
)
-1-1-onto-> ( Base `  R )  ->  N : ( Base `  R ) --> ( Base `  R ) )
2220, 21syl 14 . . . . 5  |-  ( ph  ->  N : ( Base `  R ) --> ( Base `  R ) )
2322feqmptd 5660 . . . 4  |-  ( ph  ->  N  =  ( y  e.  ( Base `  R
)  |->  ( N `  y ) ) )
24 fveq2 5603 . . . 4  |-  ( y  =  ( X `  x )  ->  ( N `  y )  =  ( N `  ( X `  x ) ) )
2515, 19, 23, 24fmptco 5774 . . 3  |-  ( ph  ->  ( N  o.  X
)  =  ( x  e.  D  |->  ( N `
 ( X `  x ) ) ) )
268, 18, 15, 25, 19offval2 6204 . 2  |-  ( ph  ->  ( ( N  o.  X )  oF ( +g  `  R
) X )  =  ( x  e.  D  |->  ( ( N `  ( X `  x ) ) ( +g  `  R
) ( X `  x ) ) ) )
27 eqid 2209 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
28 psrlinv.p . . 3  |-  .+  =  ( +g  `  S )
2910, 4, 9, 1, 16, 12, 13psrnegcl 14612 . . 3  |-  ( ph  ->  ( N  o.  X
)  e.  B )
3010, 12, 27, 28, 29, 13psradd 14608 . 2  |-  ( ph  ->  ( ( N  o.  X )  .+  X
)  =  ( ( N  o.  X )  oF ( +g  `  R ) X ) )
31 fconstmpt 4743 . . 3  |-  ( D  X.  {  .0.  }
)  =  ( x  e.  D  |->  .0.  )
32 psrlinv.o . . . . . 6  |-  .0.  =  ( 0g `  R )
3311, 27, 32, 16grplinv 13549 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X `  x )  e.  ( Base `  R
) )  ->  (
( N `  ( X `  x )
) ( +g  `  R
) ( X `  x ) )  =  .0.  )
349, 15, 33syl2an2r 597 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( N `  ( X `  x )
) ( +g  `  R
) ( X `  x ) )  =  .0.  )
3534mpteq2dva 4153 . . 3  |-  ( ph  ->  ( x  e.  D  |->  ( ( N `  ( X `  x ) ) ( +g  `  R
) ( X `  x ) ) )  =  ( x  e.  D  |->  .0.  ) )
3631, 35eqtr4id 2261 . 2  |-  ( ph  ->  ( D  X.  {  .0.  } )  =  ( x  e.  D  |->  ( ( N `  ( X `  x )
) ( +g  `  R
) ( X `  x ) ) ) )
3726, 30, 363eqtr4d 2252 1  |-  ( ph  ->  ( ( N  o.  X )  .+  X
)  =  ( D  X.  {  .0.  }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1375    e. wcel 2180   {crab 2492   _Vcvv 2779   {csn 3646    |-> cmpt 4124    X. cxp 4694   `'ccnv 4695   "cima 4699    o. ccom 4700    Fn wfn 5289   -->wf 5290   -1-1-onto->wf1o 5293   ` cfv 5294  (class class class)co 5974    oFcof 6186    ^m cmap 6765   Fincfn 6857   NNcn 9078   NN0cn0 9337   Basecbs 12998   +g cplusg 13076   0gc0g 13255   Grpcgrp 13499   invgcminusg 13500   mPwSer cmps 14590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-tset 13095  df-rest 13240  df-topn 13241  df-0g 13257  df-topgen 13259  df-pt 13260  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-psr 14592
This theorem is referenced by:  psrneg  14616
  Copyright terms: Public domain W3C validator