ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq2 Unicode version

Theorem rdgeq2 6481
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2  |-  ( A  =  B  ->  rec ( F ,  A )  =  rec ( F ,  B ) )

Proof of Theorem rdgeq2
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3328 . . . 4  |-  ( A  =  B  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( B  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )
21mpteq2dv 4151 . . 3  |-  ( A  =  B  ->  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( B  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )
3 recseq 6415 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( B  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  -> recs ( (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( B  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) ) )
42, 3syl 14 . 2  |-  ( A  =  B  -> recs ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( B  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) ) )
5 df-irdg 6479 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
6 df-irdg 6479 . 2  |-  rec ( F ,  B )  = recs ( ( g  e. 
_V  |->  ( B  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
74, 5, 63eqtr4g 2265 1  |-  ( A  =  B  ->  rec ( F ,  A )  =  rec ( F ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2776    u. cun 3172   U_ciun 3941    |-> cmpt 4121   dom cdm 4693   ` cfv 5290  recscrecs 6413   reccrdg 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-iota 5251  df-fv 5298  df-recs 6414  df-irdg 6479
This theorem is referenced by:  rdg0g  6497  oav  6563
  Copyright terms: Public domain W3C validator