Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgfun | Unicode version |
Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
rdgfun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 | |
2 | 1 | tfrlem7 6285 | . 2 recs |
3 | df-irdg 6338 | . . 3 recs | |
4 | 3 | funeqi 5209 | . 2 recs |
5 | 2, 4 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 cab 2151 wral 2444 wrex 2445 cvv 2726 cun 3114 ciun 3866 cmpt 4043 con0 4341 cdm 4604 cres 4606 wfun 5182 wfn 5183 cfv 5188 recscrecs 6272 crdg 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-recs 6273 df-irdg 6338 |
This theorem is referenced by: rdgivallem 6349 |
Copyright terms: Public domain | W3C validator |