![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgeq2 | GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq2 | ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3170 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) | |
2 | 1 | mpteq2dv 3959 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
3 | recseq 6133 | . . 3 ⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))))) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))))) |
5 | df-irdg 6197 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
6 | df-irdg 6197 | . 2 ⊢ rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
7 | 4, 5, 6 | 3eqtr4g 2157 | 1 ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 Vcvv 2641 ∪ cun 3019 ∪ ciun 3760 ↦ cmpt 3929 dom cdm 4477 ‘cfv 5059 recscrecs 6131 reccrdg 6196 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-iota 5024 df-fv 5067 df-recs 6132 df-irdg 6197 |
This theorem is referenced by: rdg0g 6215 oav 6280 |
Copyright terms: Public domain | W3C validator |