ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq2 GIF version

Theorem rdgeq2 6439
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))

Proof of Theorem rdgeq2
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3311 . . . 4 (𝐴 = 𝐵 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
21mpteq2dv 4125 . . 3 (𝐴 = 𝐵 → (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
3 recseq 6373 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
42, 3syl 14 . 2 (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
5 df-irdg 6437 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
6 df-irdg 6437 . 2 rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
74, 5, 63eqtr4g 2254 1 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2763  cun 3155   ciun 3917  cmpt 4095  dom cdm 4664  cfv 5259  recscrecs 6371  reccrdg 6436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-iota 5220  df-fv 5267  df-recs 6372  df-irdg 6437
This theorem is referenced by:  rdg0g  6455  oav  6521
  Copyright terms: Public domain W3C validator