Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgeq2 | GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq2 | ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3269 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) | |
2 | 1 | mpteq2dv 4073 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
3 | recseq 6274 | . . 3 ⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))))) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))))) |
5 | df-irdg 6338 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
6 | df-irdg 6338 | . 2 ⊢ rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ (𝐵 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
7 | 4, 5, 6 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 Vcvv 2726 ∪ cun 3114 ∪ ciun 3866 ↦ cmpt 4043 dom cdm 4604 ‘cfv 5188 recscrecs 6272 reccrdg 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-iota 5153 df-fv 5196 df-recs 6273 df-irdg 6338 |
This theorem is referenced by: rdg0g 6356 oav 6422 |
Copyright terms: Public domain | W3C validator |