ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq2 GIF version

Theorem rdgeq2 6516
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))

Proof of Theorem rdgeq2
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3351 . . . 4 (𝐴 = 𝐵 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
21mpteq2dv 4174 . . 3 (𝐴 = 𝐵 → (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
3 recseq 6450 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
42, 3syl 14 . 2 (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
5 df-irdg 6514 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
6 df-irdg 6514 . 2 rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
74, 5, 63eqtr4g 2287 1 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  Vcvv 2799  cun 3195   ciun 3964  cmpt 4144  dom cdm 4718  cfv 5317  recscrecs 6448  reccrdg 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-iota 5277  df-fv 5325  df-recs 6449  df-irdg 6514
This theorem is referenced by:  rdg0g  6532  oav  6598
  Copyright terms: Public domain W3C validator