ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0g Unicode version

Theorem rdg0g 6532
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
Assertion
Ref Expression
rdg0g  |-  ( A  e.  C  ->  ( rec ( F ,  A
) `  (/) )  =  A )

Proof of Theorem rdg0g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rdgeq2 6516 . . . 4  |-  ( x  =  A  ->  rec ( F ,  x )  =  rec ( F ,  A ) )
21fveq1d 5628 . . 3  |-  ( x  =  A  ->  ( rec ( F ,  x
) `  (/) )  =  ( rec ( F ,  A ) `  (/) ) )
3 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
42, 3eqeq12d 2244 . 2  |-  ( x  =  A  ->  (
( rec ( F ,  x ) `  (/) )  =  x  <->  ( rec ( F ,  A ) `
 (/) )  =  A ) )
5 vex 2802 . . 3  |-  x  e. 
_V
65rdg0 6531 . 2  |-  ( rec ( F ,  x
) `  (/) )  =  x
74, 6vtoclg 2861 1  |-  ( A  e.  C  ->  ( rec ( F ,  A
) `  (/) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   (/)c0 3491   ` cfv 5317   reccrdg 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-recs 6449  df-irdg 6514
This theorem is referenced by:  frecrdg  6552  oa0  6601  oei0  6603
  Copyright terms: Public domain W3C validator