ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0g Unicode version

Theorem rdg0g 6391
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
Assertion
Ref Expression
rdg0g  |-  ( A  e.  C  ->  ( rec ( F ,  A
) `  (/) )  =  A )

Proof of Theorem rdg0g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rdgeq2 6375 . . . 4  |-  ( x  =  A  ->  rec ( F ,  x )  =  rec ( F ,  A ) )
21fveq1d 5519 . . 3  |-  ( x  =  A  ->  ( rec ( F ,  x
) `  (/) )  =  ( rec ( F ,  A ) `  (/) ) )
3 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
42, 3eqeq12d 2192 . 2  |-  ( x  =  A  ->  (
( rec ( F ,  x ) `  (/) )  =  x  <->  ( rec ( F ,  A ) `
 (/) )  =  A ) )
5 vex 2742 . . 3  |-  x  e. 
_V
65rdg0 6390 . 2  |-  ( rec ( F ,  x
) `  (/) )  =  x
74, 6vtoclg 2799 1  |-  ( A  e.  C  ->  ( rec ( F ,  A
) `  (/) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   (/)c0 3424   ` cfv 5218   reccrdg 6372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-recs 6308  df-irdg 6373
This theorem is referenced by:  frecrdg  6411  oa0  6460  oei0  6462
  Copyright terms: Public domain W3C validator