ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0g Unicode version

Theorem rdg0g 6487
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
Assertion
Ref Expression
rdg0g  |-  ( A  e.  C  ->  ( rec ( F ,  A
) `  (/) )  =  A )

Proof of Theorem rdg0g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rdgeq2 6471 . . . 4  |-  ( x  =  A  ->  rec ( F ,  x )  =  rec ( F ,  A ) )
21fveq1d 5591 . . 3  |-  ( x  =  A  ->  ( rec ( F ,  x
) `  (/) )  =  ( rec ( F ,  A ) `  (/) ) )
3 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
42, 3eqeq12d 2221 . 2  |-  ( x  =  A  ->  (
( rec ( F ,  x ) `  (/) )  =  x  <->  ( rec ( F ,  A ) `
 (/) )  =  A ) )
5 vex 2776 . . 3  |-  x  e. 
_V
65rdg0 6486 . 2  |-  ( rec ( F ,  x
) `  (/) )  =  x
74, 6vtoclg 2835 1  |-  ( A  e.  C  ->  ( rec ( F ,  A
) `  (/) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   (/)c0 3464   ` cfv 5280   reccrdg 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-recs 6404  df-irdg 6469
This theorem is referenced by:  frecrdg  6507  oa0  6556  oei0  6558
  Copyright terms: Public domain W3C validator