ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlemm Unicode version

Theorem regexmidlemm 4533
Description: Lemma for regexmid 4536. 
A is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
Assertion
Ref Expression
regexmidlemm  |-  E. y 
y  e.  A
Distinct variable groups:    y, A    ph, x, y
Allowed substitution hint:    A( x)

Proof of Theorem regexmidlemm
StepHypRef Expression
1 p0ex 4190 . . . 4  |-  { (/) }  e.  _V
21prid2 3701 . . 3  |-  { (/) }  e.  { (/) ,  { (/)
} }
3 eqid 2177 . . . 4  |-  { (/) }  =  { (/) }
43orci 731 . . 3  |-  ( {
(/) }  =  { (/)
}  \/  ( {
(/) }  =  (/)  /\  ph ) )
5 eqeq1 2184 . . . . 5  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
6 eqeq1 2184 . . . . . 6  |-  ( x  =  { (/) }  ->  ( x  =  (/)  <->  { (/) }  =  (/) ) )
76anbi1d 465 . . . . 5  |-  ( x  =  { (/) }  ->  ( ( x  =  (/)  /\ 
ph )  <->  ( { (/)
}  =  (/)  /\  ph ) ) )
85, 7orbi12d 793 . . . 4  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  ( x  =  (/)  /\  ph )
)  <->  ( { (/) }  =  { (/) }  \/  ( { (/) }  =  (/)  /\ 
ph ) ) ) )
9 regexmidlemm.a . . . 4  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
108, 9elrab2 2898 . . 3  |-  ( {
(/) }  e.  A  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  ( { (/) }  =  (/)  /\ 
ph ) ) ) )
112, 4, 10mpbir2an 942 . 2  |-  { (/) }  e.  A
12 elex2 2755 . 2  |-  ( {
(/) }  e.  A  ->  E. y  y  e.  A )
1311, 12ax-mp 5 1  |-  E. y 
y  e.  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708    = wceq 1353   E.wex 1492    e. wcel 2148   {crab 2459   (/)c0 3424   {csn 3594   {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601
This theorem is referenced by:  regexmid  4536  reg2exmid  4537  reg3exmid  4581  nnregexmid  4622
  Copyright terms: Public domain W3C validator