ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlemm Unicode version

Theorem regexmidlemm 4593
Description: Lemma for regexmid 4596. 
A is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
Assertion
Ref Expression
regexmidlemm  |-  E. y 
y  e.  A
Distinct variable groups:    y, A    ph, x, y
Allowed substitution hint:    A( x)

Proof of Theorem regexmidlemm
StepHypRef Expression
1 p0ex 4243 . . . 4  |-  { (/) }  e.  _V
21prid2 3745 . . 3  |-  { (/) }  e.  { (/) ,  { (/)
} }
3 eqid 2206 . . . 4  |-  { (/) }  =  { (/) }
43orci 733 . . 3  |-  ( {
(/) }  =  { (/)
}  \/  ( {
(/) }  =  (/)  /\  ph ) )
5 eqeq1 2213 . . . . 5  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
6 eqeq1 2213 . . . . . 6  |-  ( x  =  { (/) }  ->  ( x  =  (/)  <->  { (/) }  =  (/) ) )
76anbi1d 465 . . . . 5  |-  ( x  =  { (/) }  ->  ( ( x  =  (/)  /\ 
ph )  <->  ( { (/)
}  =  (/)  /\  ph ) ) )
85, 7orbi12d 795 . . . 4  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  ( x  =  (/)  /\  ph )
)  <->  ( { (/) }  =  { (/) }  \/  ( { (/) }  =  (/)  /\ 
ph ) ) ) )
9 regexmidlemm.a . . . 4  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
108, 9elrab2 2936 . . 3  |-  ( {
(/) }  e.  A  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  ( { (/) }  =  (/)  /\ 
ph ) ) ) )
112, 4, 10mpbir2an 945 . 2  |-  { (/) }  e.  A
12 elex2 2790 . 2  |-  ( {
(/) }  e.  A  ->  E. y  y  e.  A )
1311, 12ax-mp 5 1  |-  E. y 
y  e.  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177   {crab 2489   (/)c0 3464   {csn 3638   {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645
This theorem is referenced by:  regexmid  4596  reg2exmid  4597  reg3exmid  4641  nnregexmid  4682
  Copyright terms: Public domain W3C validator