ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmidlemm Unicode version

Theorem regexmidlemm 4516
Description: Lemma for regexmid 4519. 
A is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
Hypothesis
Ref Expression
regexmidlemm.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
Assertion
Ref Expression
regexmidlemm  |-  E. y 
y  e.  A
Distinct variable groups:    y, A    ph, x, y
Allowed substitution hint:    A( x)

Proof of Theorem regexmidlemm
StepHypRef Expression
1 p0ex 4174 . . . 4  |-  { (/) }  e.  _V
21prid2 3690 . . 3  |-  { (/) }  e.  { (/) ,  { (/)
} }
3 eqid 2170 . . . 4  |-  { (/) }  =  { (/) }
43orci 726 . . 3  |-  ( {
(/) }  =  { (/)
}  \/  ( {
(/) }  =  (/)  /\  ph ) )
5 eqeq1 2177 . . . . 5  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
6 eqeq1 2177 . . . . . 6  |-  ( x  =  { (/) }  ->  ( x  =  (/)  <->  { (/) }  =  (/) ) )
76anbi1d 462 . . . . 5  |-  ( x  =  { (/) }  ->  ( ( x  =  (/)  /\ 
ph )  <->  ( { (/)
}  =  (/)  /\  ph ) ) )
85, 7orbi12d 788 . . . 4  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  ( x  =  (/)  /\  ph )
)  <->  ( { (/) }  =  { (/) }  \/  ( { (/) }  =  (/)  /\ 
ph ) ) ) )
9 regexmidlemm.a . . . 4  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
108, 9elrab2 2889 . . 3  |-  ( {
(/) }  e.  A  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  ( { (/) }  =  (/)  /\ 
ph ) ) ) )
112, 4, 10mpbir2an 937 . 2  |-  { (/) }  e.  A
12 elex2 2746 . 2  |-  ( {
(/) }  e.  A  ->  E. y  y  e.  A )
1311, 12ax-mp 5 1  |-  E. y 
y  e.  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 703    = wceq 1348   E.wex 1485    e. wcel 2141   {crab 2452   (/)c0 3414   {csn 3583   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590
This theorem is referenced by:  regexmid  4519  reg2exmid  4520  reg3exmid  4564  nnregexmid  4605
  Copyright terms: Public domain W3C validator