| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reg2exmidlema | Unicode version | ||
| Description: Lemma for reg2exmid 4572.  If  | 
| Ref | Expression | 
|---|---|
| regexmidlemm.a | 
 | 
| Ref | Expression | 
|---|---|
| reg2exmidlema | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simplr 528 | 
. . . . . . 7
 | |
| 2 | sseq1 3206 | 
. . . . . . . . 9
 | |
| 3 | 2 | ralbidv 2497 | 
. . . . . . . 8
 | 
| 4 | 3 | adantl 277 | 
. . . . . . 7
 | 
| 5 | 1, 4 | mpbid 147 | 
. . . . . 6
 | 
| 6 | 0ex 4160 | 
. . . . . . . 8
 | |
| 7 | 6 | snss 3757 | 
. . . . . . 7
 | 
| 8 | 7 | ralbii 2503 | 
. . . . . 6
 | 
| 9 | 5, 8 | sylibr 134 | 
. . . . 5
 | 
| 10 | noel 3454 | 
. . . . . 6
 | |
| 11 | eqid 2196 | 
. . . . . . . . . . . 12
 | |
| 12 | 11 | jctl 314 | 
. . . . . . . . . . 11
 | 
| 13 | 12 | olcd 735 | 
. . . . . . . . . 10
 | 
| 14 | 6 | prid1 3728 | 
. . . . . . . . . 10
 | 
| 15 | 13, 14 | jctil 312 | 
. . . . . . . . 9
 | 
| 16 | eqeq1 2203 | 
. . . . . . . . . . 11
 | |
| 17 | eqeq1 2203 | 
. . . . . . . . . . . 12
 | |
| 18 | 17 | anbi1d 465 | 
. . . . . . . . . . 11
 | 
| 19 | 16, 18 | orbi12d 794 | 
. . . . . . . . . 10
 | 
| 20 | regexmidlemm.a | 
. . . . . . . . . 10
 | |
| 21 | 19, 20 | elrab2 2923 | 
. . . . . . . . 9
 | 
| 22 | 15, 21 | sylibr 134 | 
. . . . . . . 8
 | 
| 23 | eleq2 2260 | 
. . . . . . . . 9
 | |
| 24 | 23 | rspcv 2864 | 
. . . . . . . 8
 | 
| 25 | 22, 24 | syl 14 | 
. . . . . . 7
 | 
| 26 | 25 | com12 30 | 
. . . . . 6
 | 
| 27 | 10, 26 | mtoi 665 | 
. . . . 5
 | 
| 28 | 9, 27 | syl 14 | 
. . . 4
 | 
| 29 | 28 | olcd 735 | 
. . 3
 | 
| 30 | simprr 531 | 
. . . 4
 | |
| 31 | 30 | orcd 734 | 
. . 3
 | 
| 32 | eqeq1 2203 | 
. . . . . . 7
 | |
| 33 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 34 | 33 | anbi1d 465 | 
. . . . . . 7
 | 
| 35 | 32, 34 | orbi12d 794 | 
. . . . . 6
 | 
| 36 | 35, 20 | elrab2 2923 | 
. . . . 5
 | 
| 37 | 36 | simprbi 275 | 
. . . 4
 | 
| 38 | 37 | adantr 276 | 
. . 3
 | 
| 39 | 29, 31, 38 | mpjaodan 799 | 
. 2
 | 
| 40 | 39 | rexlimiva 2609 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: reg2exmid 4572 reg3exmid 4616 | 
| Copyright terms: Public domain | W3C validator |