| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reg2exmidlema | Unicode version | ||
| Description: Lemma for reg2exmid 4627. If |
| Ref | Expression |
|---|---|
| regexmidlemm.a |
|
| Ref | Expression |
|---|---|
| reg2exmidlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . . 7
| |
| 2 | sseq1 3247 |
. . . . . . . . 9
| |
| 3 | 2 | ralbidv 2530 |
. . . . . . . 8
|
| 4 | 3 | adantl 277 |
. . . . . . 7
|
| 5 | 1, 4 | mpbid 147 |
. . . . . 6
|
| 6 | 0ex 4210 |
. . . . . . . 8
| |
| 7 | 6 | snss 3802 |
. . . . . . 7
|
| 8 | 7 | ralbii 2536 |
. . . . . 6
|
| 9 | 5, 8 | sylibr 134 |
. . . . 5
|
| 10 | noel 3495 |
. . . . . 6
| |
| 11 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 12 | 11 | jctl 314 |
. . . . . . . . . . 11
|
| 13 | 12 | olcd 739 |
. . . . . . . . . 10
|
| 14 | 6 | prid1 3772 |
. . . . . . . . . 10
|
| 15 | 13, 14 | jctil 312 |
. . . . . . . . 9
|
| 16 | eqeq1 2236 |
. . . . . . . . . . 11
| |
| 17 | eqeq1 2236 |
. . . . . . . . . . . 12
| |
| 18 | 17 | anbi1d 465 |
. . . . . . . . . . 11
|
| 19 | 16, 18 | orbi12d 798 |
. . . . . . . . . 10
|
| 20 | regexmidlemm.a |
. . . . . . . . . 10
| |
| 21 | 19, 20 | elrab2 2962 |
. . . . . . . . 9
|
| 22 | 15, 21 | sylibr 134 |
. . . . . . . 8
|
| 23 | eleq2 2293 |
. . . . . . . . 9
| |
| 24 | 23 | rspcv 2903 |
. . . . . . . 8
|
| 25 | 22, 24 | syl 14 |
. . . . . . 7
|
| 26 | 25 | com12 30 |
. . . . . 6
|
| 27 | 10, 26 | mtoi 668 |
. . . . 5
|
| 28 | 9, 27 | syl 14 |
. . . 4
|
| 29 | 28 | olcd 739 |
. . 3
|
| 30 | simprr 531 |
. . . 4
| |
| 31 | 30 | orcd 738 |
. . 3
|
| 32 | eqeq1 2236 |
. . . . . . 7
| |
| 33 | eqeq1 2236 |
. . . . . . . 8
| |
| 34 | 33 | anbi1d 465 |
. . . . . . 7
|
| 35 | 32, 34 | orbi12d 798 |
. . . . . 6
|
| 36 | 35, 20 | elrab2 2962 |
. . . . 5
|
| 37 | 36 | simprbi 275 |
. . . 4
|
| 38 | 37 | adantr 276 |
. . 3
|
| 39 | 29, 31, 38 | mpjaodan 803 |
. 2
|
| 40 | 39 | rexlimiva 2643 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: reg2exmid 4627 reg3exmid 4671 |
| Copyright terms: Public domain | W3C validator |