Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > regexmid | Unicode version |
Description: The axiom of foundation
implies excluded middle.
By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by ). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4521. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmid.1 |
Ref | Expression |
---|---|
regexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . 3 | |
2 | 1 | regexmidlemm 4516 | . 2 |
3 | pp0ex 4175 | . . . 4 | |
4 | 3 | rabex 4133 | . . 3 |
5 | eleq2 2234 | . . . . 5 | |
6 | 5 | exbidv 1818 | . . . 4 |
7 | eleq2 2234 | . . . . . . . . 9 | |
8 | 7 | notbid 662 | . . . . . . . 8 |
9 | 8 | imbi2d 229 | . . . . . . 7 |
10 | 9 | albidv 1817 | . . . . . 6 |
11 | 5, 10 | anbi12d 470 | . . . . 5 |
12 | 11 | exbidv 1818 | . . . 4 |
13 | 6, 12 | imbi12d 233 | . . 3 |
14 | regexmid.1 | . . 3 | |
15 | 4, 13, 14 | vtocl 2784 | . 2 |
16 | 1 | regexmidlem1 4517 | . 2 |
17 | 2, 15, 16 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wal 1346 wceq 1348 wex 1485 wcel 2141 crab 2452 c0 3414 csn 3583 cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |