ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  regexmid Unicode version

Theorem regexmid 4351
Description: The axiom of foundation implies excluded middle.

By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by  e.). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4353. (Contributed by Jim Kingdon, 3-Sep-2019.)

Hypothesis
Ref Expression
regexmid.1  |-  ( E. y  y  e.  x  ->  E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )
Assertion
Ref Expression
regexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y, z

Proof of Theorem regexmid
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqid 2088 . . 3  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  =  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }
21regexmidlemm 4348 . 2  |-  E. y 
y  e.  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }
3 pp0ex 4024 . . . 4  |-  { (/) ,  { (/) } }  e.  _V
43rabex 3983 . . 3  |-  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  e.  _V
5 eleq2 2151 . . . . 5  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( y  e.  x  <->  y  e.  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } ) )
65exbidv 1753 . . . 4  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( E. y  y  e.  x  <->  E. y  y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )
7 eleq2 2151 . . . . . . . . 9  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( z  e.  x  <->  z  e.  { w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) } ) )
87notbid 627 . . . . . . . 8  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( -.  z  e.  x  <->  -.  z  e.  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) } ) )
98imbi2d 228 . . . . . . 7  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( z  e.  y  ->  -.  z  e.  x )  <->  ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
109albidv 1752 . . . . . 6  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( A. z ( z  e.  y  ->  -.  z  e.  x )  <->  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
115, 10anbi12d 457 . . . . 5  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
)  <->  ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) )
1211exbidv 1753 . . . 4  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) )  <->  E. y
( y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) )
136, 12imbi12d 232 . . 3  |-  ( x  =  { w  e. 
{ (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  ( ( E. y  y  e.  x  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )  <->  ( E. y  y  e.  { w  e.  { (/) ,  { (/) } }  |  ( w  =  { (/) }  \/  ( w  =  (/)  /\  ph ) ) }  ->  E. y ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) ) ) )
14 regexmid.1 . . 3  |-  ( E. y  y  e.  x  ->  E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )
154, 13, 14vtocl 2673 . 2  |-  ( E. y  y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  ->  E. y
( y  e.  {
w  e.  { (/) ,  { (/) } }  | 
( w  =  { (/)
}  \/  ( w  =  (/)  /\  ph )
) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) ) )
161regexmidlem1 4349 . 2  |-  ( E. y ( y  e. 
{ w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) }  /\  A. z ( z  e.  y  ->  -.  z  e.  { w  e.  { (/)
,  { (/) } }  |  ( w  =  { (/) }  \/  (
w  =  (/)  /\  ph ) ) } ) )  ->  ( ph  \/  -.  ph ) )
172, 15, 16mp2b 8 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   {crab 2363   (/)c0 3286   {csn 3446   {cpr 3447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator