| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > regexmid | Unicode version | ||
| Description: The axiom of foundation
implies excluded middle.
By foundation (or regularity), we mean the principle that every
inhabited set has an element which is minimal (when arranged by
For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4628. (Contributed by Jim Kingdon, 3-Sep-2019.) |
| Ref | Expression |
|---|---|
| regexmid.1 |
|
| Ref | Expression |
|---|---|
| regexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | 1 | regexmidlemm 4623 |
. 2
|
| 3 | pp0ex 4272 |
. . . 4
| |
| 4 | 3 | rabex 4227 |
. . 3
|
| 5 | eleq2 2293 |
. . . . 5
| |
| 6 | 5 | exbidv 1871 |
. . . 4
|
| 7 | eleq2 2293 |
. . . . . . . . 9
| |
| 8 | 7 | notbid 671 |
. . . . . . . 8
|
| 9 | 8 | imbi2d 230 |
. . . . . . 7
|
| 10 | 9 | albidv 1870 |
. . . . . 6
|
| 11 | 5, 10 | anbi12d 473 |
. . . . 5
|
| 12 | 11 | exbidv 1871 |
. . . 4
|
| 13 | 6, 12 | imbi12d 234 |
. . 3
|
| 14 | regexmid.1 |
. . 3
| |
| 15 | 4, 13, 14 | vtocl 2855 |
. 2
|
| 16 | 1 | regexmidlem1 4624 |
. 2
|
| 17 | 2, 15, 16 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |