| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > regexmid | Unicode version | ||
| Description: The axiom of foundation
implies excluded middle.
 
       By foundation (or regularity), we mean the principle that every
       inhabited set has an element which is minimal (when arranged by
        For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4573. (Contributed by Jim Kingdon, 3-Sep-2019.)  | 
| Ref | Expression | 
|---|---|
| regexmid.1 | 
 | 
| Ref | Expression | 
|---|---|
| regexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. . 3
 | |
| 2 | 1 | regexmidlemm 4568 | 
. 2
 | 
| 3 | pp0ex 4222 | 
. . . 4
 | |
| 4 | 3 | rabex 4177 | 
. . 3
 | 
| 5 | eleq2 2260 | 
. . . . 5
 | |
| 6 | 5 | exbidv 1839 | 
. . . 4
 | 
| 7 | eleq2 2260 | 
. . . . . . . . 9
 | |
| 8 | 7 | notbid 668 | 
. . . . . . . 8
 | 
| 9 | 8 | imbi2d 230 | 
. . . . . . 7
 | 
| 10 | 9 | albidv 1838 | 
. . . . . 6
 | 
| 11 | 5, 10 | anbi12d 473 | 
. . . . 5
 | 
| 12 | 11 | exbidv 1839 | 
. . . 4
 | 
| 13 | 6, 12 | imbi12d 234 | 
. . 3
 | 
| 14 | regexmid.1 | 
. . 3
 | |
| 15 | 4, 13, 14 | vtocl 2818 | 
. 2
 | 
| 16 | 1 | regexmidlem1 4569 | 
. 2
 | 
| 17 | 2, 15, 16 | mp2b 8 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |