Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > regexmid | Unicode version |
Description: The axiom of foundation
implies excluded middle.
By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by ). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4514. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmid.1 |
Ref | Expression |
---|---|
regexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 | |
2 | 1 | regexmidlemm 4509 | . 2 |
3 | pp0ex 4168 | . . . 4 | |
4 | 3 | rabex 4126 | . . 3 |
5 | eleq2 2230 | . . . . 5 | |
6 | 5 | exbidv 1813 | . . . 4 |
7 | eleq2 2230 | . . . . . . . . 9 | |
8 | 7 | notbid 657 | . . . . . . . 8 |
9 | 8 | imbi2d 229 | . . . . . . 7 |
10 | 9 | albidv 1812 | . . . . . 6 |
11 | 5, 10 | anbi12d 465 | . . . . 5 |
12 | 11 | exbidv 1813 | . . . 4 |
13 | 6, 12 | imbi12d 233 | . . 3 |
14 | regexmid.1 | . . 3 | |
15 | 4, 13, 14 | vtocl 2780 | . 2 |
16 | 1 | regexmidlem1 4510 | . 2 |
17 | 2, 15, 16 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1341 wceq 1343 wex 1480 wcel 2136 crab 2448 c0 3409 csn 3576 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |