| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > regexmid | Unicode version | ||
| Description: The axiom of foundation
implies excluded middle.
By foundation (or regularity), we mean the principle that every
inhabited set has an element which is minimal (when arranged by
For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4585. (Contributed by Jim Kingdon, 3-Sep-2019.) |
| Ref | Expression |
|---|---|
| regexmid.1 |
|
| Ref | Expression |
|---|---|
| regexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | 1 | regexmidlemm 4580 |
. 2
|
| 3 | pp0ex 4233 |
. . . 4
| |
| 4 | 3 | rabex 4188 |
. . 3
|
| 5 | eleq2 2269 |
. . . . 5
| |
| 6 | 5 | exbidv 1848 |
. . . 4
|
| 7 | eleq2 2269 |
. . . . . . . . 9
| |
| 8 | 7 | notbid 669 |
. . . . . . . 8
|
| 9 | 8 | imbi2d 230 |
. . . . . . 7
|
| 10 | 9 | albidv 1847 |
. . . . . 6
|
| 11 | 5, 10 | anbi12d 473 |
. . . . 5
|
| 12 | 11 | exbidv 1848 |
. . . 4
|
| 13 | 6, 12 | imbi12d 234 |
. . 3
|
| 14 | regexmid.1 |
. . 3
| |
| 15 | 4, 13, 14 | vtocl 2827 |
. 2
|
| 16 | 1 | regexmidlem1 4581 |
. 2
|
| 17 | 2, 15, 16 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |