Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > regexmid | Unicode version |
Description: The axiom of foundation
implies excluded middle.
By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by ). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4494. (Contributed by Jim Kingdon, 3-Sep-2019.) |
Ref | Expression |
---|---|
regexmid.1 |
Ref | Expression |
---|---|
regexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . 3 | |
2 | 1 | regexmidlemm 4489 | . 2 |
3 | pp0ex 4149 | . . . 4 | |
4 | 3 | rabex 4108 | . . 3 |
5 | eleq2 2221 | . . . . 5 | |
6 | 5 | exbidv 1805 | . . . 4 |
7 | eleq2 2221 | . . . . . . . . 9 | |
8 | 7 | notbid 657 | . . . . . . . 8 |
9 | 8 | imbi2d 229 | . . . . . . 7 |
10 | 9 | albidv 1804 | . . . . . 6 |
11 | 5, 10 | anbi12d 465 | . . . . 5 |
12 | 11 | exbidv 1805 | . . . 4 |
13 | 6, 12 | imbi12d 233 | . . 3 |
14 | regexmid.1 | . . 3 | |
15 | 4, 13, 14 | vtocl 2766 | . 2 |
16 | 1 | regexmidlem1 4490 | . 2 |
17 | 2, 15, 16 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1333 wceq 1335 wex 1472 wcel 2128 crab 2439 c0 3394 csn 3560 cpr 3561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |