ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmmap Unicode version

Theorem reldmmap 6659
Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
reldmmap  |-  Rel  dom  ^m

Proof of Theorem reldmmap
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6652 . 2  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
21reldmmpo 5988 1  |-  Rel  dom  ^m
Colors of variables: wff set class
Syntax hints:   {cab 2163   _Vcvv 2739   dom cdm 4628   Rel wrel 4633   -->wf 5214    ^m cmap 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-dm 4638  df-oprab 5881  df-mpo 5882  df-map 6652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator