ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmmap Unicode version

Theorem reldmmap 6430
Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
reldmmap  |-  Rel  dom  ^m

Proof of Theorem reldmmap
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6423 . 2  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
21reldmmpt2 5772 1  |-  Rel  dom  ^m
Colors of variables: wff set class
Syntax hints:   {cab 2075   _Vcvv 2622   dom cdm 4454   Rel wrel 4459   -->wf 5026    ^m cmap 6421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-opab 3908  df-xp 4460  df-rel 4461  df-dm 4464  df-oprab 5672  df-mpt2 5673  df-map 6423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator