ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpm Unicode version

Theorem fnpm 6656
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
fnpm  |-  ^pm  Fn  ( _V  X.  _V )

Proof of Theorem fnpm
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6651 . 2  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
2 vex 2741 . . . . 5  |-  y  e. 
_V
3 vex 2741 . . . . 5  |-  x  e. 
_V
42, 3xpex 4742 . . . 4  |-  ( y  X.  x )  e. 
_V
54pwex 4184 . . 3  |-  ~P (
y  X.  x )  e.  _V
65rabex 4148 . 2  |-  { f  e.  ~P ( y  X.  x )  |  Fun  f }  e.  _V
71, 6fnmpoi 6205 1  |-  ^pm  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:   {crab 2459   _Vcvv 2738   ~Pcpw 3576    X. cxp 4625   Fun wfun 5211    Fn wfn 5212    ^pm cpm 6649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pm 6651
This theorem is referenced by:  lmfval  13695
  Copyright terms: Public domain W3C validator