ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpm Unicode version

Theorem fnpm 6801
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
fnpm  |-  ^pm  Fn  ( _V  X.  _V )

Proof of Theorem fnpm
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6796 . 2  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
2 vex 2802 . . . . 5  |-  y  e. 
_V
3 vex 2802 . . . . 5  |-  x  e. 
_V
42, 3xpex 4833 . . . 4  |-  ( y  X.  x )  e. 
_V
54pwex 4266 . . 3  |-  ~P (
y  X.  x )  e.  _V
65rabex 4227 . 2  |-  { f  e.  ~P ( y  X.  x )  |  Fun  f }  e.  _V
71, 6fnmpoi 6347 1  |-  ^pm  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:   {crab 2512   _Vcvv 2799   ~Pcpw 3649    X. cxp 4716   Fun wfun 5311    Fn wfn 5312    ^pm cpm 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pm 6796
This theorem is referenced by:  lmfval  14860
  Copyright terms: Public domain W3C validator