ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldmi Unicode version

Theorem releldmi 4905
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
Hypothesis
Ref Expression
releldm.1  |-  Rel  R
Assertion
Ref Expression
releldmi  |-  ( A R B  ->  A  e.  dom  R )

Proof of Theorem releldmi
StepHypRef Expression
1 releldm.1 . 2  |-  Rel  R
2 releldm 4901 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
31, 2mpan 424 1  |-  ( A R B  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   class class class wbr 4033   dom cdm 4663   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-dm 4673
This theorem is referenced by:  iserex  11488  climrecvg1n  11497  climcvg1nlem  11498  fsum3cvg3  11545  trirecip  11650
  Copyright terms: Public domain W3C validator