ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldmi Unicode version

Theorem releldmi 4962
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
Hypothesis
Ref Expression
releldm.1  |-  Rel  R
Assertion
Ref Expression
releldmi  |-  ( A R B  ->  A  e.  dom  R )

Proof of Theorem releldmi
StepHypRef Expression
1 releldm.1 . 2  |-  Rel  R
2 releldm 4958 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
31, 2mpan 424 1  |-  ( A R B  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   class class class wbr 4082   dom cdm 4718   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-dm 4728
This theorem is referenced by:  iserex  11845  climrecvg1n  11854  climcvg1nlem  11855  fsum3cvg3  11902  trirecip  12007
  Copyright terms: Public domain W3C validator