ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trirecip Unicode version

Theorem trirecip 11302
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  2

Proof of Theorem trirecip
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 2cnd 8817 . . . 4  |-  ( k  e.  NN  ->  2  e.  CC )
2 peano2nn 8756 . . . . . 6  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
3 nnmulcl 8765 . . . . . 6  |-  ( ( k  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( k  x.  ( k  +  1 ) )  e.  NN )
42, 3mpdan 418 . . . . 5  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) )  e.  NN )
54nncnd 8758 . . . 4  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) )  e.  CC )
64nnap0d 8790 . . . 4  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) ) #  0 )
71, 5, 6divrecapd 8577 . . 3  |-  ( k  e.  NN  ->  (
2  /  ( k  x.  ( k  +  1 ) ) )  =  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) ) )
87sumeq2i 11165 . 2  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  sum_ k  e.  NN  (
2  x.  ( 1  /  ( k  x.  ( k  +  1 ) ) ) )
9 nnuz 9385 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
10 1zzd 9105 . . . . 5  |-  ( T. 
->  1  e.  ZZ )
11 simpr 109 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
124adantl 275 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  x.  ( k  +  1 ) )  e.  NN )
1312nnrecred 8791 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  RR )
14 id 19 . . . . . . . . 9  |-  ( n  =  k  ->  n  =  k )
15 oveq1 5789 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
1614, 15oveq12d 5800 . . . . . . . 8  |-  ( n  =  k  ->  (
n  x.  ( n  +  1 ) )  =  ( k  x.  ( k  +  1 ) ) )
1716oveq2d 5798 . . . . . . 7  |-  ( n  =  k  ->  (
1  /  ( n  x.  ( n  + 
1 ) ) )  =  ( 1  / 
( k  x.  (
k  +  1 ) ) ) )
18 eqid 2140 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) )
1917, 18fvmptg 5505 . . . . . 6  |-  ( ( k  e.  NN  /\  ( 1  /  (
k  x.  ( k  +  1 ) ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  +  1 ) ) ) ) `
 k )  =  ( 1  /  (
k  x.  ( k  +  1 ) ) ) )
2011, 13, 19syl2anc 409 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) `  k
)  =  ( 1  /  ( k  x.  ( k  +  1 ) ) ) )
214nnrecred 8791 . . . . . . 7  |-  ( k  e.  NN  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  RR )
2221recnd 7818 . . . . . 6  |-  ( k  e.  NN  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  CC )
2322adantl 275 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  CC )
2418trireciplem 11301 . . . . . . 7  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  + 
1 ) ) ) ) )  ~~>  1
2524a1i 9 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) ) )  ~~>  1 )
26 climrel 11081 . . . . . . 7  |-  Rel  ~~>
2726releldmi 4786 . . . . . 6  |-  (  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) )  ~~>  1  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) )  e. 
dom 
~~>  )
2825, 27syl 14 . . . . 5  |-  ( T. 
->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) ) )  e.  dom  ~~>  )
29 2cnd 8817 . . . . 5  |-  ( T. 
->  2  e.  CC )
309, 10, 20, 23, 28, 29isummulc2 11227 . . . 4  |-  ( T. 
->  ( 2  x.  sum_ k  e.  NN  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  sum_ k  e.  NN  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) ) )
319, 10, 20, 23, 25isumclim 11222 . . . . 5  |-  ( T. 
->  sum_ k  e.  NN  ( 1  /  (
k  x.  ( k  +  1 ) ) )  =  1 )
3231oveq2d 5798 . . . 4  |-  ( T. 
->  ( 2  x.  sum_ k  e.  NN  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 ) )
3330, 32eqtr3d 2175 . . 3  |-  ( T. 
->  sum_ k  e.  NN  ( 2  x.  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 ) )
3433mptru 1341 . 2  |-  sum_ k  e.  NN  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 )
35 2t1e2 8897 . 2  |-  ( 2  x.  1 )  =  2
368, 34, 353eqtri 2165 1  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  2
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1332   T. wtru 1333    e. wcel 1481   class class class wbr 3937    |-> cmpt 3997   dom cdm 4547   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   1c1 7645    + caddc 7647    x. cmul 7649    / cdiv 8456   NNcn 8744   2c2 8795    seqcseq 10249    ~~> cli 11079   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator