ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trirecip Unicode version

Theorem trirecip 11451
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  2

Proof of Theorem trirecip
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 2cnd 8938 . . . 4  |-  ( k  e.  NN  ->  2  e.  CC )
2 peano2nn 8877 . . . . . 6  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
3 nnmulcl 8886 . . . . . 6  |-  ( ( k  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( k  x.  ( k  +  1 ) )  e.  NN )
42, 3mpdan 419 . . . . 5  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) )  e.  NN )
54nncnd 8879 . . . 4  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) )  e.  CC )
64nnap0d 8911 . . . 4  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) ) #  0 )
71, 5, 6divrecapd 8697 . . 3  |-  ( k  e.  NN  ->  (
2  /  ( k  x.  ( k  +  1 ) ) )  =  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) ) )
87sumeq2i 11314 . 2  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  sum_ k  e.  NN  (
2  x.  ( 1  /  ( k  x.  ( k  +  1 ) ) ) )
9 nnuz 9509 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
10 1zzd 9226 . . . . 5  |-  ( T. 
->  1  e.  ZZ )
11 simpr 109 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
124adantl 275 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  x.  ( k  +  1 ) )  e.  NN )
1312nnrecred 8912 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  RR )
14 id 19 . . . . . . . . 9  |-  ( n  =  k  ->  n  =  k )
15 oveq1 5857 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
1614, 15oveq12d 5868 . . . . . . . 8  |-  ( n  =  k  ->  (
n  x.  ( n  +  1 ) )  =  ( k  x.  ( k  +  1 ) ) )
1716oveq2d 5866 . . . . . . 7  |-  ( n  =  k  ->  (
1  /  ( n  x.  ( n  + 
1 ) ) )  =  ( 1  / 
( k  x.  (
k  +  1 ) ) ) )
18 eqid 2170 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) )
1917, 18fvmptg 5570 . . . . . 6  |-  ( ( k  e.  NN  /\  ( 1  /  (
k  x.  ( k  +  1 ) ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  +  1 ) ) ) ) `
 k )  =  ( 1  /  (
k  x.  ( k  +  1 ) ) ) )
2011, 13, 19syl2anc 409 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) `  k
)  =  ( 1  /  ( k  x.  ( k  +  1 ) ) ) )
214nnrecred 8912 . . . . . . 7  |-  ( k  e.  NN  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  RR )
2221recnd 7935 . . . . . 6  |-  ( k  e.  NN  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  CC )
2322adantl 275 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  CC )
2418trireciplem 11450 . . . . . . 7  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  + 
1 ) ) ) ) )  ~~>  1
2524a1i 9 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) ) )  ~~>  1 )
26 climrel 11230 . . . . . . 7  |-  Rel  ~~>
2726releldmi 4848 . . . . . 6  |-  (  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) )  ~~>  1  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) )  e. 
dom 
~~>  )
2825, 27syl 14 . . . . 5  |-  ( T. 
->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) ) )  e.  dom  ~~>  )
29 2cnd 8938 . . . . 5  |-  ( T. 
->  2  e.  CC )
309, 10, 20, 23, 28, 29isummulc2 11376 . . . 4  |-  ( T. 
->  ( 2  x.  sum_ k  e.  NN  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  sum_ k  e.  NN  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) ) )
319, 10, 20, 23, 25isumclim 11371 . . . . 5  |-  ( T. 
->  sum_ k  e.  NN  ( 1  /  (
k  x.  ( k  +  1 ) ) )  =  1 )
3231oveq2d 5866 . . . 4  |-  ( T. 
->  ( 2  x.  sum_ k  e.  NN  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 ) )
3330, 32eqtr3d 2205 . . 3  |-  ( T. 
->  sum_ k  e.  NN  ( 2  x.  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 ) )
3433mptru 1357 . 2  |-  sum_ k  e.  NN  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 )
35 2t1e2 9018 . 2  |-  ( 2  x.  1 )  =  2
368, 34, 353eqtri 2195 1  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  2
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   T. wtru 1349    e. wcel 2141   class class class wbr 3987    |-> cmpt 4048   dom cdm 4609   ` cfv 5196  (class class class)co 5850   CCcc 7759   RRcr 7760   1c1 7762    + caddc 7764    x. cmul 7766    / cdiv 8576   NNcn 8865   2c2 8916    seqcseq 10388    ~~> cli 11228   sum_csu 11303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-ihash 10697  df-shft 10766  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator