ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 Unicode version

Theorem fsum3cvg3 11740
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1  |-  Z  =  ( ZZ>= `  M )
fsumcvg3.2  |-  ( ph  ->  M  e.  ZZ )
fsumcvg3.3  |-  ( ph  ->  A  e.  Fin )
fsumcvg3.4  |-  ( ph  ->  A  C_  Z )
fisumcvg3.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumcvg3.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
fsumcvg3.6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsum3cvg3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    A, k    k, F    k, M    ph, k
Allowed substitution hints:    B( k)    Z( k)

Proof of Theorem fsum3cvg3
Dummy variables  n  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5  |-  ( ph  ->  A  C_  Z )
2 fsumcvg3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9670 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
4 zssre 9381 . . . . . . 7  |-  ZZ  C_  RR
53, 4sstri 3202 . . . . . 6  |-  ( ZZ>= `  M )  C_  RR
62, 5eqsstri 3225 . . . . 5  |-  Z  C_  RR
71, 6sstrdi 3205 . . . 4  |-  ( ph  ->  A  C_  RR )
8 fsumcvg3.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
9 fimaxre2 11571 . . . 4  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
107, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
11 arch 9294 . . . . 5  |-  ( x  e.  RR  ->  E. m  e.  NN  x  <  m
)
1211ad2antrl 490 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. m  e.  NN  x  <  m
)
13 fsumcvg3.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  ZZ )
15 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  NN )
1615nnzd 9496 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  ZZ )
17 zmaxcl 11568 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  M  e.  ZZ )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1816, 14, 17syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1915nnred 9051 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  RR )
2014zred 9497 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  RR )
21 maxle2 11556 . . . . . . 7  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
2219, 20, 21syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
23 eluz2 9656 . . . . . 6  |-  ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  <->  ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  M  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
2414, 18, 22, 23syl3anbrc 1184 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M ) )
2514adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  ZZ )
2618adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
271, 2sseqtrdi 3241 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2827ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ( ZZ>= `  M ) )
2928, 3sstrdi 3205 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ZZ )
30 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  A )
3129, 30sseldd 3194 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ZZ )
3225, 26, 313jca 1180 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  e.  ZZ  /\ 
sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ ) )
3327ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( ZZ>= `  M
) )
3433sselda 3193 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( ZZ>= `  M ) )
35 eluzle 9662 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  M
)  ->  M  <_  z )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  <_  z )
3731zred 9497 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  RR )
3819adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  e.  RR )
3926zred 9497 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  RR )
40 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  x  e.  RR )
4140ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  e.  RR )
42 breq1 4048 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  <_  x  <->  z  <_  x ) )
43 simprr 531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  A. y  e.  A  y  <_  x )
4443ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A. y  e.  A  y  <_  x )
4542, 44, 30rspcdva 2882 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  x )
46 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <  m )
4741, 38, 46ltled 8193 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <_  m )
4837, 41, 38, 45, 47letrd 8198 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  m )
4920adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  RR )
50 maxle1 11555 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5138, 49, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5237, 38, 39, 48, 51letrd 8198 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5336, 52jca 306 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
54 elfz2 10139 . . . . . . . 8  |-  ( z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  ) )  <->  ( ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ )  /\  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) ) )
5532, 53, 54sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5655ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  -> 
( z  e.  A  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
5756ssrdv 3199 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )
58 oveq2 5954 . . . . . . 7  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( M ... n
)  =  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5958sseq2d 3223 . . . . . 6  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( A  C_  ( M ... n )  <->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
6059rspcev 2877 . . . . 5  |-  ( ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  /\  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
6124, 57, 60syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  E. n  e.  ( ZZ>=
`  M ) A 
C_  ( M ... n ) )
6212, 61rexlimddv 2628 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. n  e.  ( ZZ>= `  M ) A  C_  ( M ... n ) )
6310, 62rexlimddv 2628 . 2  |-  ( ph  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
642eleq2i 2272 . . . . . 6  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
65 fsumcvg3.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
6664, 65sylan2br 288 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
6766adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
68 simprl 529 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  n  e.  ( ZZ>= `  M )
)
69 fsumcvg3.6 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
7069adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  A )  ->  B  e.  CC )
71 fisumcvg3.dc . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
7271adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )
73 simprr 531 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  A  C_  ( M ... n ) )
7467, 68, 70, 72, 73fsum3cvg2 11738 . . 3  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `
 n ) )
75 climrel 11624 . . . 4  |-  Rel  ~~>
7675releldmi 4918 . . 3  |-  (  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  n
)  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7774, 76syl 14 . 2  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7863, 77rexlimddv 2628 1  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   ifcif 3571   {cpr 3634   class class class wbr 4045   dom cdm 4676   ` cfv 5272  (class class class)co 5946   Fincfn 6829   supcsup 7086   CCcc 7925   RRcr 7926   0cc0 7927    + caddc 7930    < clt 8109    <_ cle 8110   NNcn 9038   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132    seqcseq 10594    ~~> cli 11622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-er 6622  df-en 6830  df-fin 6832  df-sup 7088  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-fz 10133  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623
This theorem is referenced by:  isumlessdc  11840
  Copyright terms: Public domain W3C validator