ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 Unicode version

Theorem fsum3cvg3 11822
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1  |-  Z  =  ( ZZ>= `  M )
fsumcvg3.2  |-  ( ph  ->  M  e.  ZZ )
fsumcvg3.3  |-  ( ph  ->  A  e.  Fin )
fsumcvg3.4  |-  ( ph  ->  A  C_  Z )
fisumcvg3.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumcvg3.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
fsumcvg3.6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsum3cvg3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    A, k    k, F    k, M    ph, k
Allowed substitution hints:    B( k)    Z( k)

Proof of Theorem fsum3cvg3
Dummy variables  n  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5  |-  ( ph  ->  A  C_  Z )
2 fsumcvg3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9703 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
4 zssre 9414 . . . . . . 7  |-  ZZ  C_  RR
53, 4sstri 3210 . . . . . 6  |-  ( ZZ>= `  M )  C_  RR
62, 5eqsstri 3233 . . . . 5  |-  Z  C_  RR
71, 6sstrdi 3213 . . . 4  |-  ( ph  ->  A  C_  RR )
8 fsumcvg3.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
9 fimaxre2 11653 . . . 4  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
107, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
11 arch 9327 . . . . 5  |-  ( x  e.  RR  ->  E. m  e.  NN  x  <  m
)
1211ad2antrl 490 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. m  e.  NN  x  <  m
)
13 fsumcvg3.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  ZZ )
15 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  NN )
1615nnzd 9529 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  ZZ )
17 zmaxcl 11650 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  M  e.  ZZ )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1816, 14, 17syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1915nnred 9084 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  RR )
2014zred 9530 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  RR )
21 maxle2 11638 . . . . . . 7  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
2219, 20, 21syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
23 eluz2 9689 . . . . . 6  |-  ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  <->  ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  M  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
2414, 18, 22, 23syl3anbrc 1184 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M ) )
2514adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  ZZ )
2618adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
271, 2sseqtrdi 3249 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2827ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ( ZZ>= `  M ) )
2928, 3sstrdi 3213 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ZZ )
30 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  A )
3129, 30sseldd 3202 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ZZ )
3225, 26, 313jca 1180 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  e.  ZZ  /\ 
sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ ) )
3327ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( ZZ>= `  M
) )
3433sselda 3201 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( ZZ>= `  M ) )
35 eluzle 9695 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  M
)  ->  M  <_  z )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  <_  z )
3731zred 9530 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  RR )
3819adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  e.  RR )
3926zred 9530 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  RR )
40 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  x  e.  RR )
4140ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  e.  RR )
42 breq1 4062 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  <_  x  <->  z  <_  x ) )
43 simprr 531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  A. y  e.  A  y  <_  x )
4443ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A. y  e.  A  y  <_  x )
4542, 44, 30rspcdva 2889 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  x )
46 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <  m )
4741, 38, 46ltled 8226 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <_  m )
4837, 41, 38, 45, 47letrd 8231 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  m )
4920adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  RR )
50 maxle1 11637 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5138, 49, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5237, 38, 39, 48, 51letrd 8231 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5336, 52jca 306 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
54 elfz2 10172 . . . . . . . 8  |-  ( z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  ) )  <->  ( ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ )  /\  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) ) )
5532, 53, 54sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5655ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  -> 
( z  e.  A  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
5756ssrdv 3207 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )
58 oveq2 5975 . . . . . . 7  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( M ... n
)  =  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5958sseq2d 3231 . . . . . 6  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( A  C_  ( M ... n )  <->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
6059rspcev 2884 . . . . 5  |-  ( ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  /\  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
6124, 57, 60syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  E. n  e.  ( ZZ>=
`  M ) A 
C_  ( M ... n ) )
6212, 61rexlimddv 2630 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. n  e.  ( ZZ>= `  M ) A  C_  ( M ... n ) )
6310, 62rexlimddv 2630 . 2  |-  ( ph  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
642eleq2i 2274 . . . . . 6  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
65 fsumcvg3.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
6664, 65sylan2br 288 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
6766adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
68 simprl 529 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  n  e.  ( ZZ>= `  M )
)
69 fsumcvg3.6 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
7069adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  A )  ->  B  e.  CC )
71 fisumcvg3.dc . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
7271adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )
73 simprr 531 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  A  C_  ( M ... n ) )
7467, 68, 70, 72, 73fsum3cvg2 11820 . . 3  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `
 n ) )
75 climrel 11706 . . . 4  |-  Rel  ~~>
7675releldmi 4936 . . 3  |-  (  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  n
)  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7774, 76syl 14 . 2  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7863, 77rexlimddv 2630 1  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   ifcif 3579   {cpr 3644   class class class wbr 4059   dom cdm 4693   ` cfv 5290  (class class class)co 5967   Fincfn 6850   supcsup 7110   CCcc 7958   RRcr 7959   0cc0 7960    + caddc 7963    < clt 8142    <_ cle 8143   NNcn 9071   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-er 6643  df-en 6851  df-fin 6853  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-fz 10166  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by:  isumlessdc  11922
  Copyright terms: Public domain W3C validator