ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 Unicode version

Theorem fsum3cvg3 11388
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1  |-  Z  =  ( ZZ>= `  M )
fsumcvg3.2  |-  ( ph  ->  M  e.  ZZ )
fsumcvg3.3  |-  ( ph  ->  A  e.  Fin )
fsumcvg3.4  |-  ( ph  ->  A  C_  Z )
fisumcvg3.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumcvg3.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
fsumcvg3.6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsum3cvg3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    A, k    k, F    k, M    ph, k
Allowed substitution hints:    B( k)    Z( k)

Proof of Theorem fsum3cvg3
Dummy variables  n  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5  |-  ( ph  ->  A  C_  Z )
2 fsumcvg3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9536 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
4 zssre 9249 . . . . . . 7  |-  ZZ  C_  RR
53, 4sstri 3164 . . . . . 6  |-  ( ZZ>= `  M )  C_  RR
62, 5eqsstri 3187 . . . . 5  |-  Z  C_  RR
71, 6sstrdi 3167 . . . 4  |-  ( ph  ->  A  C_  RR )
8 fsumcvg3.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
9 fimaxre2 11219 . . . 4  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
107, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
11 arch 9162 . . . . 5  |-  ( x  e.  RR  ->  E. m  e.  NN  x  <  m
)
1211ad2antrl 490 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. m  e.  NN  x  <  m
)
13 fsumcvg3.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  ZZ )
15 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  NN )
1615nnzd 9363 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  ZZ )
17 zmaxcl 11217 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  M  e.  ZZ )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1816, 14, 17syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1915nnred 8921 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  RR )
2014zred 9364 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  RR )
21 maxle2 11205 . . . . . . 7  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
2219, 20, 21syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
23 eluz2 9523 . . . . . 6  |-  ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  <->  ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  M  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
2414, 18, 22, 23syl3anbrc 1181 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M ) )
2514adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  ZZ )
2618adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
271, 2sseqtrdi 3203 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2827ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ( ZZ>= `  M ) )
2928, 3sstrdi 3167 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ZZ )
30 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  A )
3129, 30sseldd 3156 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ZZ )
3225, 26, 313jca 1177 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  e.  ZZ  /\ 
sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ ) )
3327ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( ZZ>= `  M
) )
3433sselda 3155 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( ZZ>= `  M ) )
35 eluzle 9529 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  M
)  ->  M  <_  z )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  <_  z )
3731zred 9364 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  RR )
3819adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  e.  RR )
3926zred 9364 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  RR )
40 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  x  e.  RR )
4140ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  e.  RR )
42 breq1 4003 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  <_  x  <->  z  <_  x ) )
43 simprr 531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  A. y  e.  A  y  <_  x )
4443ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A. y  e.  A  y  <_  x )
4542, 44, 30rspcdva 2846 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  x )
46 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <  m )
4741, 38, 46ltled 8066 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <_  m )
4837, 41, 38, 45, 47letrd 8071 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  m )
4920adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  RR )
50 maxle1 11204 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5138, 49, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5237, 38, 39, 48, 51letrd 8071 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5336, 52jca 306 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
54 elfz2 10002 . . . . . . . 8  |-  ( z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  ) )  <->  ( ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ )  /\  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) ) )
5532, 53, 54sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5655ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  -> 
( z  e.  A  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
5756ssrdv 3161 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )
58 oveq2 5877 . . . . . . 7  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( M ... n
)  =  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5958sseq2d 3185 . . . . . 6  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( A  C_  ( M ... n )  <->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
6059rspcev 2841 . . . . 5  |-  ( ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  /\  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
6124, 57, 60syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  E. n  e.  ( ZZ>=
`  M ) A 
C_  ( M ... n ) )
6212, 61rexlimddv 2599 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. n  e.  ( ZZ>= `  M ) A  C_  ( M ... n ) )
6310, 62rexlimddv 2599 . 2  |-  ( ph  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
642eleq2i 2244 . . . . . 6  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
65 fsumcvg3.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
6664, 65sylan2br 288 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
6766adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
68 simprl 529 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  n  e.  ( ZZ>= `  M )
)
69 fsumcvg3.6 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
7069adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  A )  ->  B  e.  CC )
71 fisumcvg3.dc . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
7271adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )
73 simprr 531 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  A  C_  ( M ... n ) )
7467, 68, 70, 72, 73fsum3cvg2 11386 . . 3  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `
 n ) )
75 climrel 11272 . . . 4  |-  Rel  ~~>
7675releldmi 4862 . . 3  |-  (  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  n
)  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7774, 76syl 14 . 2  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7863, 77rexlimddv 2599 1  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   ifcif 3534   {cpr 3592   class class class wbr 4000   dom cdm 4623   ` cfv 5212  (class class class)co 5869   Fincfn 6734   supcsup 6975   CCcc 7800   RRcr 7801   0cc0 7802    + caddc 7805    < clt 7982    <_ cle 7983   NNcn 8908   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    seqcseq 10431    ~~> cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-er 6529  df-en 6735  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-fz 9996  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271
This theorem is referenced by:  isumlessdc  11488
  Copyright terms: Public domain W3C validator