ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 Unicode version

Theorem fsum3cvg3 11120
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1  |-  Z  =  ( ZZ>= `  M )
fsumcvg3.2  |-  ( ph  ->  M  e.  ZZ )
fsumcvg3.3  |-  ( ph  ->  A  e.  Fin )
fsumcvg3.4  |-  ( ph  ->  A  C_  Z )
fisumcvg3.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumcvg3.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
fsumcvg3.6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsum3cvg3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    A, k    k, F    k, M    ph, k
Allowed substitution hints:    B( k)    Z( k)

Proof of Theorem fsum3cvg3
Dummy variables  n  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5  |-  ( ph  ->  A  C_  Z )
2 fsumcvg3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9301 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
4 zssre 9019 . . . . . . 7  |-  ZZ  C_  RR
53, 4sstri 3076 . . . . . 6  |-  ( ZZ>= `  M )  C_  RR
62, 5eqsstri 3099 . . . . 5  |-  Z  C_  RR
71, 6sstrdi 3079 . . . 4  |-  ( ph  ->  A  C_  RR )
8 fsumcvg3.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
9 fimaxre2 10953 . . . 4  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
107, 8, 9syl2anc 408 . . 3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
11 arch 8932 . . . . 5  |-  ( x  e.  RR  ->  E. m  e.  NN  x  <  m
)
1211ad2antrl 481 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. m  e.  NN  x  <  m
)
13 fsumcvg3.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1413ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  ZZ )
15 simprl 505 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  NN )
1615nnzd 9130 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  ZZ )
17 zmaxcl 10951 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  M  e.  ZZ )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1816, 14, 17syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1915nnred 8697 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  RR )
2014zred 9131 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  RR )
21 maxle2 10939 . . . . . . 7  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
2219, 20, 21syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
23 eluz2 9288 . . . . . 6  |-  ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  <->  ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  M  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
2414, 18, 22, 23syl3anbrc 1150 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M ) )
2514adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  ZZ )
2618adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
271, 2sseqtrdi 3115 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2827ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ( ZZ>= `  M ) )
2928, 3sstrdi 3079 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ZZ )
30 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  A )
3129, 30sseldd 3068 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ZZ )
3225, 26, 313jca 1146 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  e.  ZZ  /\ 
sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ ) )
3327ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( ZZ>= `  M
) )
3433sselda 3067 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( ZZ>= `  M ) )
35 eluzle 9294 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  M
)  ->  M  <_  z )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  <_  z )
3731zred 9131 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  RR )
3819adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  e.  RR )
3926zred 9131 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  RR )
40 simprl 505 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  x  e.  RR )
4140ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  e.  RR )
42 breq1 3902 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  <_  x  <->  z  <_  x ) )
43 simprr 506 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  A. y  e.  A  y  <_  x )
4443ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A. y  e.  A  y  <_  x )
4542, 44, 30rspcdva 2768 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  x )
46 simplrr 510 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <  m )
4741, 38, 46ltled 7849 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <_  m )
4837, 41, 38, 45, 47letrd 7854 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  m )
4920adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  RR )
50 maxle1 10938 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5138, 49, 50syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5237, 38, 39, 48, 51letrd 7854 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5336, 52jca 304 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
54 elfz2 9752 . . . . . . . 8  |-  ( z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  ) )  <->  ( ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ )  /\  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) ) )
5532, 53, 54sylanbrc 413 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5655ex 114 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  -> 
( z  e.  A  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
5756ssrdv 3073 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )
58 oveq2 5750 . . . . . . 7  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( M ... n
)  =  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5958sseq2d 3097 . . . . . 6  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( A  C_  ( M ... n )  <->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
6059rspcev 2763 . . . . 5  |-  ( ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  /\  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
6124, 57, 60syl2anc 408 . . . 4  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  E. n  e.  ( ZZ>=
`  M ) A 
C_  ( M ... n ) )
6212, 61rexlimddv 2531 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. n  e.  ( ZZ>= `  M ) A  C_  ( M ... n ) )
6310, 62rexlimddv 2531 . 2  |-  ( ph  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
642eleq2i 2184 . . . . . 6  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
65 fsumcvg3.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
6664, 65sylan2br 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
6766adantlr 468 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
68 simprl 505 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  n  e.  ( ZZ>= `  M )
)
69 fsumcvg3.6 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
7069adantlr 468 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  A )  ->  B  e.  CC )
71 fisumcvg3.dc . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
7271adantlr 468 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )
73 simprr 506 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  A  C_  ( M ... n ) )
7467, 68, 70, 72, 73fsum3cvg2 11118 . . 3  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `
 n ) )
75 climrel 11004 . . . 4  |-  Rel  ~~>
7675releldmi 4748 . . 3  |-  (  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  n
)  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7774, 76syl 14 . 2  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7863, 77rexlimddv 2531 1  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 804    /\ w3a 947    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394    C_ wss 3041   ifcif 3444   {cpr 3498   class class class wbr 3899   dom cdm 4509   ` cfv 5093  (class class class)co 5742   Fincfn 6602   supcsup 6837   CCcc 7586   RRcr 7587   0cc0 7588    + caddc 7591    < clt 7768    <_ cle 7769   NNcn 8684   ZZcz 9012   ZZ>=cuz 9282   ...cfz 9745    seqcseq 10173    ~~> cli 11002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-er 6397  df-en 6603  df-fin 6605  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-rp 9398  df-fz 9746  df-seqfrec 10174  df-exp 10248  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726  df-clim 11003
This theorem is referenced by:  isumlessdc  11220
  Copyright terms: Public domain W3C validator