| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsum3cvg3 | Unicode version | ||
| Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.) |
| Ref | Expression |
|---|---|
| fsumcvg3.1 |
|
| fsumcvg3.2 |
|
| fsumcvg3.3 |
|
| fsumcvg3.4 |
|
| fisumcvg3.dc |
|
| fsumcvg3.5 |
|
| fsumcvg3.6 |
|
| Ref | Expression |
|---|---|
| fsum3cvg3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcvg3.4 |
. . . . 5
| |
| 2 | fsumcvg3.1 |
. . . . . 6
| |
| 3 | uzssz 9638 |
. . . . . . 7
| |
| 4 | zssre 9350 |
. . . . . . 7
| |
| 5 | 3, 4 | sstri 3193 |
. . . . . 6
|
| 6 | 2, 5 | eqsstri 3216 |
. . . . 5
|
| 7 | 1, 6 | sstrdi 3196 |
. . . 4
|
| 8 | fsumcvg3.3 |
. . . 4
| |
| 9 | fimaxre2 11409 |
. . . 4
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . 3
|
| 11 | arch 9263 |
. . . . 5
| |
| 12 | 11 | ad2antrl 490 |
. . . 4
|
| 13 | fsumcvg3.2 |
. . . . . . 7
| |
| 14 | 13 | ad2antrr 488 |
. . . . . 6
|
| 15 | simprl 529 |
. . . . . . . 8
| |
| 16 | 15 | nnzd 9464 |
. . . . . . 7
|
| 17 | zmaxcl 11406 |
. . . . . . 7
| |
| 18 | 16, 14, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 15 | nnred 9020 |
. . . . . . 7
|
| 20 | 14 | zred 9465 |
. . . . . . 7
|
| 21 | maxle2 11394 |
. . . . . . 7
| |
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . 6
|
| 23 | eluz2 9624 |
. . . . . 6
| |
| 24 | 14, 18, 22, 23 | syl3anbrc 1183 |
. . . . 5
|
| 25 | 14 | adantr 276 |
. . . . . . . . 9
|
| 26 | 18 | adantr 276 |
. . . . . . . . 9
|
| 27 | 1, 2 | sseqtrdi 3232 |
. . . . . . . . . . . 12
|
| 28 | 27 | ad3antrrr 492 |
. . . . . . . . . . 11
|
| 29 | 28, 3 | sstrdi 3196 |
. . . . . . . . . 10
|
| 30 | simpr 110 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | sseldd 3185 |
. . . . . . . . 9
|
| 32 | 25, 26, 31 | 3jca 1179 |
. . . . . . . 8
|
| 33 | 27 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 34 | 33 | sselda 3184 |
. . . . . . . . . 10
|
| 35 | eluzle 9630 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | 31 | zred 9465 |
. . . . . . . . . 10
|
| 38 | 19 | adantr 276 |
. . . . . . . . . 10
|
| 39 | 26 | zred 9465 |
. . . . . . . . . 10
|
| 40 | simprl 529 |
. . . . . . . . . . . 12
| |
| 41 | 40 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 42 | breq1 4037 |
. . . . . . . . . . . 12
| |
| 43 | simprr 531 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 45 | 42, 44, 30 | rspcdva 2873 |
. . . . . . . . . . 11
|
| 46 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 47 | 41, 38, 46 | ltled 8162 |
. . . . . . . . . . 11
|
| 48 | 37, 41, 38, 45, 47 | letrd 8167 |
. . . . . . . . . 10
|
| 49 | 20 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | maxle1 11393 |
. . . . . . . . . . 11
| |
| 51 | 38, 49, 50 | syl2anc 411 |
. . . . . . . . . 10
|
| 52 | 37, 38, 39, 48, 51 | letrd 8167 |
. . . . . . . . 9
|
| 53 | 36, 52 | jca 306 |
. . . . . . . 8
|
| 54 | elfz2 10107 |
. . . . . . . 8
| |
| 55 | 32, 53, 54 | sylanbrc 417 |
. . . . . . 7
|
| 56 | 55 | ex 115 |
. . . . . 6
|
| 57 | 56 | ssrdv 3190 |
. . . . 5
|
| 58 | oveq2 5933 |
. . . . . . 7
| |
| 59 | 58 | sseq2d 3214 |
. . . . . 6
|
| 60 | 59 | rspcev 2868 |
. . . . 5
|
| 61 | 24, 57, 60 | syl2anc 411 |
. . . 4
|
| 62 | 12, 61 | rexlimddv 2619 |
. . 3
|
| 63 | 10, 62 | rexlimddv 2619 |
. 2
|
| 64 | 2 | eleq2i 2263 |
. . . . . 6
|
| 65 | fsumcvg3.5 |
. . . . . 6
| |
| 66 | 64, 65 | sylan2br 288 |
. . . . 5
|
| 67 | 66 | adantlr 477 |
. . . 4
|
| 68 | simprl 529 |
. . . 4
| |
| 69 | fsumcvg3.6 |
. . . . 5
| |
| 70 | 69 | adantlr 477 |
. . . 4
|
| 71 | fisumcvg3.dc |
. . . . 5
| |
| 72 | 71 | adantlr 477 |
. . . 4
|
| 73 | simprr 531 |
. . . 4
| |
| 74 | 67, 68, 70, 72, 73 | fsum3cvg2 11576 |
. . 3
|
| 75 | climrel 11462 |
. . . 4
| |
| 76 | 75 | releldmi 4906 |
. . 3
|
| 77 | 74, 76 | syl 14 |
. 2
|
| 78 | 63, 77 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-er 6601 df-en 6809 df-fin 6811 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-fz 10101 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 |
| This theorem is referenced by: isumlessdc 11678 |
| Copyright terms: Public domain | W3C validator |