ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 Unicode version

Theorem fsum3cvg3 11578
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1  |-  Z  =  ( ZZ>= `  M )
fsumcvg3.2  |-  ( ph  ->  M  e.  ZZ )
fsumcvg3.3  |-  ( ph  ->  A  e.  Fin )
fsumcvg3.4  |-  ( ph  ->  A  C_  Z )
fisumcvg3.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
fsumcvg3.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
fsumcvg3.6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsum3cvg3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    A, k    k, F    k, M    ph, k
Allowed substitution hints:    B( k)    Z( k)

Proof of Theorem fsum3cvg3
Dummy variables  n  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5  |-  ( ph  ->  A  C_  Z )
2 fsumcvg3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9638 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
4 zssre 9350 . . . . . . 7  |-  ZZ  C_  RR
53, 4sstri 3193 . . . . . 6  |-  ( ZZ>= `  M )  C_  RR
62, 5eqsstri 3216 . . . . 5  |-  Z  C_  RR
71, 6sstrdi 3196 . . . 4  |-  ( ph  ->  A  C_  RR )
8 fsumcvg3.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
9 fimaxre2 11409 . . . 4  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
107, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
11 arch 9263 . . . . 5  |-  ( x  e.  RR  ->  E. m  e.  NN  x  <  m
)
1211ad2antrl 490 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. m  e.  NN  x  <  m
)
13 fsumcvg3.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  ZZ )
15 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  NN )
1615nnzd 9464 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  ZZ )
17 zmaxcl 11406 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  M  e.  ZZ )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1816, 14, 17syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
1915nnred 9020 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  m  e.  RR )
2014zred 9465 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  e.  RR )
21 maxle2 11394 . . . . . . 7  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
2219, 20, 21syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  M  <_  sup ( { m ,  M } ,  RR ,  <  ) )
23 eluz2 9624 . . . . . 6  |-  ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  <->  ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  M  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
2414, 18, 22, 23syl3anbrc 1183 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M ) )
2514adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  ZZ )
2618adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ )
271, 2sseqtrdi 3232 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2827ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ( ZZ>= `  M ) )
2928, 3sstrdi 3196 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A  C_  ZZ )
30 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  A )
3129, 30sseldd 3185 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ZZ )
3225, 26, 313jca 1179 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  e.  ZZ  /\ 
sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ ) )
3327ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( ZZ>= `  M
) )
3433sselda 3184 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( ZZ>= `  M ) )
35 eluzle 9630 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  M
)  ->  M  <_  z )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  <_  z )
3731zred 9465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  RR )
3819adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  e.  RR )
3926zred 9465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  sup ( { m ,  M } ,  RR ,  <  )  e.  RR )
40 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  x  e.  RR )
4140ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  e.  RR )
42 breq1 4037 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  <_  x  <->  z  <_  x ) )
43 simprr 531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  A. y  e.  A  y  <_  x )
4443ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  A. y  e.  A  y  <_  x )
4542, 44, 30rspcdva 2873 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  x )
46 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <  m )
4741, 38, 46ltled 8162 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  x  <_  m )
4837, 41, 38, 45, 47letrd 8167 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  m )
4920adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  M  e.  RR )
50 maxle1 11393 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5138, 49, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  m  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5237, 38, 39, 48, 51letrd 8167 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  <_  sup ( { m ,  M } ,  RR ,  <  ) )
5336, 52jca 306 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) )
54 elfz2 10107 . . . . . . . 8  |-  ( z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  ) )  <->  ( ( M  e.  ZZ  /\  sup ( { m ,  M } ,  RR ,  <  )  e.  ZZ  /\  z  e.  ZZ )  /\  ( M  <_  z  /\  z  <_  sup ( { m ,  M } ,  RR ,  <  ) ) ) )
5532, 53, 54sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  /\  z  e.  A )  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5655ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  -> 
( z  e.  A  ->  z  e.  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
5756ssrdv 3190 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )
58 oveq2 5933 . . . . . . 7  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( M ... n
)  =  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) )
5958sseq2d 3214 . . . . . 6  |-  ( n  =  sup ( { m ,  M } ,  RR ,  <  )  ->  ( A  C_  ( M ... n )  <->  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  )
) ) )
6059rspcev 2868 . . . . 5  |-  ( ( sup ( { m ,  M } ,  RR ,  <  )  e.  (
ZZ>= `  M )  /\  A  C_  ( M ... sup ( { m ,  M } ,  RR ,  <  ) ) )  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
6124, 57, 60syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  /\  ( m  e.  NN  /\  x  < 
m ) )  ->  E. n  e.  ( ZZ>=
`  M ) A 
C_  ( M ... n ) )
6212, 61rexlimddv 2619 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  A. y  e.  A  y  <_  x ) )  ->  E. n  e.  ( ZZ>= `  M ) A  C_  ( M ... n ) )
6310, 62rexlimddv 2619 . 2  |-  ( ph  ->  E. n  e.  (
ZZ>= `  M ) A 
C_  ( M ... n ) )
642eleq2i 2263 . . . . . 6  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
65 fsumcvg3.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
6664, 65sylan2br 288 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
6766adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
68 simprl 529 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  n  e.  ( ZZ>= `  M )
)
69 fsumcvg3.6 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
7069adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  A )  ->  B  e.  CC )
71 fisumcvg3.dc . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
7271adantlr 477 . . . 4  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n
) ) )  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )
73 simprr 531 . . . 4  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  A  C_  ( M ... n ) )
7467, 68, 70, 72, 73fsum3cvg2 11576 . . 3  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `
 n ) )
75 climrel 11462 . . . 4  |-  Rel  ~~>
7675releldmi 4906 . . 3  |-  (  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  n
)  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7774, 76syl 14 . 2  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  A  C_  ( M ... n ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
7863, 77rexlimddv 2619 1  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   ifcif 3562   {cpr 3624   class class class wbr 4034   dom cdm 4664   ` cfv 5259  (class class class)co 5925   Fincfn 6808   supcsup 7057   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899    < clt 8078    <_ cle 8079   NNcn 9007   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556    ~~> cli 11460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-er 6601  df-en 6809  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-fz 10101  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461
This theorem is referenced by:  isumlessdc  11678
  Copyright terms: Public domain W3C validator