ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n Unicode version

Theorem climrecvg1n 11289
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f  |-  ( ph  ->  F : NN --> RR )
climrecvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climrecvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
Assertion
Ref Expression
climrecvg1n  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, n    ph, k, n

Proof of Theorem climrecvg1n
Dummy variables  e  i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3  |-  ( ph  ->  F : NN --> RR )
2 climrecvg1n.c . . 3  |-  ( ph  ->  C  e.  RR+ )
3 climrecvg1n.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
43r19.21bi 2554 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n ) )
54r19.21bi 2554 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
61ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR )
7 eluznn 9538 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87adantll 468 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
96, 8ffvelrnd 5621 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
10 simplr 520 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
116, 10ffvelrnd 5621 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
122ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
1310nnrpd 9630 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
1412, 13rpdivcld 9650 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
1514rpred 9632 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
169, 11, 15absdifltd 11120 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  <->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) ) )
175, 16mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
1811, 15, 9ltsubaddd 8439 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  <->  ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) ) ) )
1918anbi1d 461 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F `  n )  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) )  <->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) ) )
2017, 19mpbid 146 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) )
2120ralrimiva 2539 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
2221ralrimiva 2539 . . 3  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
231, 2, 22cvg1n 10928 . 2  |-  ( ph  ->  E. y  e.  RR  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) )
241adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR )  ->  F : NN
--> RR )
2524ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  F : NN --> RR )
26 eluznn 9538 . . . . . . . . . . . 12  |-  ( ( i  e.  NN  /\  j  e.  ( ZZ>= `  i ) )  -> 
j  e.  NN )
2726adantll 468 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  NN )
2825, 27ffvelrnd 5621 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  RR )
29 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
3029ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  y  e.  RR )
31 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR+ )
3231rpred 9632 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR )
3328, 30, 32absdifltd 11120 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( y  -  e
)  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
3430, 32, 28ltsubaddd 8439 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( y  -  e )  < 
( F `  j
)  <->  y  <  (
( F `  j
)  +  e ) ) )
3534anbi1d 461 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( ( y  -  e )  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `
 j )  < 
( y  +  e ) ) ) )
3633, 35bitrd 187 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
37 ancom 264 . . . . . . . 8  |-  ( ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( ( F `  j )  <  ( y  +  e )  /\  y  < 
( ( F `  j )  +  e ) ) )
3836, 37bitrdi 195 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( F `  j
)  <  ( y  +  e )  /\  y  <  ( ( F `
 j )  +  e ) ) ) )
3938ralbidva 2462 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  ->  ( A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
4039rexbidva 2463 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  ->  ( E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( ( F `  j )  <  ( y  +  e )  /\  y  <  ( ( F `  j )  +  e ) ) ) )
4140ralbidva 2462 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
42 nnuz 9501 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
43 1zzd 9218 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  ZZ )
44 nnex 8863 . . . . . . . 8  |-  NN  e.  _V
4544a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  NN  e.  _V )
46 reex 7887 . . . . . . . 8  |-  RR  e.  _V
4746a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  RR  e.  _V )
48 fex2 5356 . . . . . . 7  |-  ( ( F : NN --> RR  /\  NN  e.  _V  /\  RR  e.  _V )  ->  F  e.  _V )
4924, 45, 47, 48syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  F  e. 
_V )
50 eqidd 2166 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  =  ( F `  j ) )
5129recnd 7927 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  CC )
5224ffvelrnda 5620 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  RR )
5352recnd 7927 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  CC )
5442, 43, 49, 50, 51, 53clim2c 11225 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( F  ~~>  y  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e
) )
55 climrel 11221 . . . . . 6  |-  Rel  ~~>
5655releldmi 4843 . . . . 5  |-  ( F  ~~>  y  ->  F  e.  dom 
~~>  )
5754, 56syl6bir 163 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  ->  F  e.  dom  ~~>  ) )
5841, 57sylbird 169 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) )  ->  F  e.  dom 
~~>  ) )
5958impr 377 . 2  |-  ( (
ph  /\  ( y  e.  RR  /\  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )  ->  F  e.  dom  ~~>  )
6023, 59rexlimddv 2588 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726   class class class wbr 3982   dom cdm 4604   -->wf 5184   ` cfv 5188  (class class class)co 5842   RRcr 7752   1c1 7754    + caddc 7756    < clt 7933    - cmin 8069    / cdiv 8568   NNcn 8857   ZZ>=cuz 9466   RR+crp 9589   abscabs 10939    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  climcvg1nlem  11290
  Copyright terms: Public domain W3C validator