ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n Unicode version

Theorem climrecvg1n 11149
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f  |-  ( ph  ->  F : NN --> RR )
climrecvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climrecvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
Assertion
Ref Expression
climrecvg1n  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, n    ph, k, n

Proof of Theorem climrecvg1n
Dummy variables  e  i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3  |-  ( ph  ->  F : NN --> RR )
2 climrecvg1n.c . . 3  |-  ( ph  ->  C  e.  RR+ )
3 climrecvg1n.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
43r19.21bi 2523 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n ) )
54r19.21bi 2523 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
61ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR )
7 eluznn 9421 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87adantll 468 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
96, 8ffvelrnd 5564 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
10 simplr 520 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
116, 10ffvelrnd 5564 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
122ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
1310nnrpd 9511 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
1412, 13rpdivcld 9531 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
1514rpred 9513 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
169, 11, 15absdifltd 10982 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  <->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) ) )
175, 16mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
1811, 15, 9ltsubaddd 8327 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  <->  ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) ) ) )
1918anbi1d 461 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F `  n )  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) )  <->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) ) )
2017, 19mpbid 146 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) )
2120ralrimiva 2508 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
2221ralrimiva 2508 . . 3  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
231, 2, 22cvg1n 10790 . 2  |-  ( ph  ->  E. y  e.  RR  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) )
241adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR )  ->  F : NN
--> RR )
2524ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  F : NN --> RR )
26 eluznn 9421 . . . . . . . . . . . 12  |-  ( ( i  e.  NN  /\  j  e.  ( ZZ>= `  i ) )  -> 
j  e.  NN )
2726adantll 468 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  NN )
2825, 27ffvelrnd 5564 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  RR )
29 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
3029ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  y  e.  RR )
31 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR+ )
3231rpred 9513 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR )
3328, 30, 32absdifltd 10982 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( y  -  e
)  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
3430, 32, 28ltsubaddd 8327 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( y  -  e )  < 
( F `  j
)  <->  y  <  (
( F `  j
)  +  e ) ) )
3534anbi1d 461 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( ( y  -  e )  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `
 j )  < 
( y  +  e ) ) ) )
3633, 35bitrd 187 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
37 ancom 264 . . . . . . . 8  |-  ( ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( ( F `  j )  <  ( y  +  e )  /\  y  < 
( ( F `  j )  +  e ) ) )
3836, 37syl6bb 195 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( F `  j
)  <  ( y  +  e )  /\  y  <  ( ( F `
 j )  +  e ) ) ) )
3938ralbidva 2434 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  ->  ( A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
4039rexbidva 2435 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  ->  ( E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( ( F `  j )  <  ( y  +  e )  /\  y  <  ( ( F `  j )  +  e ) ) ) )
4140ralbidva 2434 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
42 nnuz 9385 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
43 1zzd 9105 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  ZZ )
44 nnex 8750 . . . . . . . 8  |-  NN  e.  _V
4544a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  NN  e.  _V )
46 reex 7778 . . . . . . . 8  |-  RR  e.  _V
4746a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  RR  e.  _V )
48 fex2 5299 . . . . . . 7  |-  ( ( F : NN --> RR  /\  NN  e.  _V  /\  RR  e.  _V )  ->  F  e.  _V )
4924, 45, 47, 48syl3anc 1217 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  F  e. 
_V )
50 eqidd 2141 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  =  ( F `  j ) )
5129recnd 7818 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  CC )
5224ffvelrnda 5563 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  RR )
5352recnd 7818 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  CC )
5442, 43, 49, 50, 51, 53clim2c 11085 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( F  ~~>  y  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e
) )
55 climrel 11081 . . . . . 6  |-  Rel  ~~>
5655releldmi 4786 . . . . 5  |-  ( F  ~~>  y  ->  F  e.  dom 
~~>  )
5754, 56syl6bir 163 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  ->  F  e.  dom  ~~>  ) )
5841, 57sylbird 169 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) )  ->  F  e.  dom 
~~>  ) )
5958impr 377 . 2  |-  ( (
ph  /\  ( y  e.  RR  /\  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )  ->  F  e.  dom  ~~>  )
6023, 59rexlimddv 2557 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1481   A.wral 2417   E.wrex 2418   _Vcvv 2689   class class class wbr 3937   dom cdm 4547   -->wf 5127   ` cfv 5131  (class class class)co 5782   RRcr 7643   1c1 7645    + caddc 7647    < clt 7824    - cmin 7957    / cdiv 8456   NNcn 8744   ZZ>=cuz 9350   RR+crp 9470   abscabs 10801    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  climcvg1nlem  11150
  Copyright terms: Public domain W3C validator