ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n Unicode version

Theorem climrecvg1n 11249
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f  |-  ( ph  ->  F : NN --> RR )
climrecvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climrecvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
Assertion
Ref Expression
climrecvg1n  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, n    ph, k, n

Proof of Theorem climrecvg1n
Dummy variables  e  i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3  |-  ( ph  ->  F : NN --> RR )
2 climrecvg1n.c . . 3  |-  ( ph  ->  C  e.  RR+ )
3 climrecvg1n.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
43r19.21bi 2545 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n ) )
54r19.21bi 2545 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
61ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR )
7 eluznn 9512 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87adantll 468 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
96, 8ffvelrnd 5604 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
10 simplr 520 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
116, 10ffvelrnd 5604 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
122ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
1310nnrpd 9602 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
1412, 13rpdivcld 9622 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
1514rpred 9604 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
169, 11, 15absdifltd 11082 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  <->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) ) )
175, 16mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
1811, 15, 9ltsubaddd 8417 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  <->  ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) ) ) )
1918anbi1d 461 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F `  n )  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) )  <->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) ) )
2017, 19mpbid 146 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) )
2120ralrimiva 2530 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
2221ralrimiva 2530 . . 3  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
231, 2, 22cvg1n 10890 . 2  |-  ( ph  ->  E. y  e.  RR  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) )
241adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR )  ->  F : NN
--> RR )
2524ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  F : NN --> RR )
26 eluznn 9512 . . . . . . . . . . . 12  |-  ( ( i  e.  NN  /\  j  e.  ( ZZ>= `  i ) )  -> 
j  e.  NN )
2726adantll 468 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  NN )
2825, 27ffvelrnd 5604 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  RR )
29 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
3029ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  y  e.  RR )
31 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR+ )
3231rpred 9604 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR )
3328, 30, 32absdifltd 11082 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( y  -  e
)  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
3430, 32, 28ltsubaddd 8417 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( y  -  e )  < 
( F `  j
)  <->  y  <  (
( F `  j
)  +  e ) ) )
3534anbi1d 461 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( ( y  -  e )  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `
 j )  < 
( y  +  e ) ) ) )
3633, 35bitrd 187 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
37 ancom 264 . . . . . . . 8  |-  ( ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( ( F `  j )  <  ( y  +  e )  /\  y  < 
( ( F `  j )  +  e ) ) )
3836, 37bitrdi 195 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( F `  j
)  <  ( y  +  e )  /\  y  <  ( ( F `
 j )  +  e ) ) ) )
3938ralbidva 2453 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  ->  ( A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
4039rexbidva 2454 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  ->  ( E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( ( F `  j )  <  ( y  +  e )  /\  y  <  ( ( F `  j )  +  e ) ) ) )
4140ralbidva 2453 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
42 nnuz 9475 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
43 1zzd 9195 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  ZZ )
44 nnex 8840 . . . . . . . 8  |-  NN  e.  _V
4544a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  NN  e.  _V )
46 reex 7867 . . . . . . . 8  |-  RR  e.  _V
4746a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  RR  e.  _V )
48 fex2 5339 . . . . . . 7  |-  ( ( F : NN --> RR  /\  NN  e.  _V  /\  RR  e.  _V )  ->  F  e.  _V )
4924, 45, 47, 48syl3anc 1220 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  F  e. 
_V )
50 eqidd 2158 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  =  ( F `  j ) )
5129recnd 7907 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  CC )
5224ffvelrnda 5603 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  RR )
5352recnd 7907 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  CC )
5442, 43, 49, 50, 51, 53clim2c 11185 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( F  ~~>  y  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e
) )
55 climrel 11181 . . . . . 6  |-  Rel  ~~>
5655releldmi 4826 . . . . 5  |-  ( F  ~~>  y  ->  F  e.  dom 
~~>  )
5754, 56syl6bir 163 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  ->  F  e.  dom  ~~>  ) )
5841, 57sylbird 169 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) )  ->  F  e.  dom 
~~>  ) )
5958impr 377 . 2  |-  ( (
ph  /\  ( y  e.  RR  /\  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )  ->  F  e.  dom  ~~>  )
6023, 59rexlimddv 2579 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   A.wral 2435   E.wrex 2436   _Vcvv 2712   class class class wbr 3966   dom cdm 4587   -->wf 5167   ` cfv 5171  (class class class)co 5825   RRcr 7732   1c1 7734    + caddc 7736    < clt 7913    - cmin 8047    / cdiv 8546   NNcn 8834   ZZ>=cuz 9440   RR+crp 9561   abscabs 10901    ~~> cli 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-n0 9092  df-z 9169  df-uz 9441  df-rp 9562  df-seqfrec 10349  df-exp 10423  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-clim 11180
This theorem is referenced by:  climcvg1nlem  11250
  Copyright terms: Public domain W3C validator