ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserex Unicode version

Theorem iserex 11521
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
clim2ser.1  |-  Z  =  ( ZZ>= `  M )
iserex.2  |-  ( ph  ->  N  e.  Z )
iserex.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
iserex  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem iserex
StepHypRef Expression
1 seqeq1 10559 . . . . 5  |-  ( N  =  M  ->  seq N (  +  ,  F )  =  seq M (  +  ,  F ) )
21eleq1d 2265 . . . 4  |-  ( N  =  M  ->  (  seq N (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  e.  dom  ~~>  ) )
32bicomd 141 . . 3  |-  ( N  =  M  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
43a1i 9 . 2  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  +  ,  F
)  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) ) )
5 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ph )
6 iserex.2 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  Z )
7 clim2ser.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
86, 7eleqtrdi 2289 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
9 eluzelz 9627 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
108, 9syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
1110zcnd 9466 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
12 ax-1cn 7989 . . . . . . . . 9  |-  1  e.  CC
13 npcan 8252 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
1411, 12, 13sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
1514seqeq1d 10562 . . . . . . 7  |-  ( ph  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
165, 15syl 14 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
17 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  (
ZZ>= `  M ) )
1817, 7eleqtrrdi 2290 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  Z
)
19 iserex.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
205, 19sylan 283 . . . . . . 7  |-  ( ( ( ( ph  /\  ( N  -  1
)  e.  ( ZZ>= `  M ) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  Z
)  ->  ( F `  k )  e.  CC )
21 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
22 climdm 11477 . . . . . . . 8  |-  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
2321, 22sylib 122 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
247, 18, 20, 23clim2ser 11519 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
2516, 24eqbrtrrd 4058 . . . . 5  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
26 climrel 11462 . . . . . 6  |-  Rel  ~~>
2726releldmi 4906 . . . . 5  |-  (  seq N (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) )  ->  seq N (  +  ,  F )  e.  dom  ~~>  )
2825, 27syl 14 . . . 4  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
29 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
3029, 7eleqtrrdi 2290 . . . . . . 7  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  Z )
3130adantr 276 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  Z
)
32 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  ph )
3332, 19sylan 283 . . . . . 6  |-  ( ( ( ( ph  /\  ( N  -  1
)  e.  ( ZZ>= `  M ) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  Z
)  ->  ( F `  k )  e.  CC )
3432, 15syl 14 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
35 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
36 climdm 11477 . . . . . . . 8  |-  (  seq N (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
3735, 36sylib 122 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
3834, 37eqbrtrd 4056 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
397, 31, 33, 38clim2ser2 11520 . . . . 5  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  ~~>  ( (  ~~>  `
 seq N (  +  ,  F ) )  +  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
4026releldmi 4906 . . . . 5  |-  (  seq M (  +  ,  F )  ~~>  ( (  ~~>  `
 seq N (  +  ,  F ) )  +  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
4139, 40syl 14 . . . 4  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
4228, 41impbida 596 . . 3  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
4342ex 115 . 2  |-  ( ph  ->  ( ( N  - 
1 )  e.  (
ZZ>= `  M )  -> 
(  seq M (  +  ,  F )  e. 
dom 
~~> 
<->  seq N (  +  ,  F )  e. 
dom 
~~>  ) ) )
44 uzm1 9649 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
458, 44syl 14 . 2  |-  ( ph  ->  ( N  =  M  \/  ( N  - 
1 )  e.  (
ZZ>= `  M ) ) )
464, 43, 45mpjaod 719 1  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4034   dom cdm 4664   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    - cmin 8214   ZZcz 9343   ZZ>=cuz 9618    seqcseq 10556    ~~> cli 11460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-fz 10101  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461
This theorem is referenced by:  isumsplit  11673  isumrpcl  11676  geolim2  11694  cvgratz  11714  cvgratgt0  11715  mertenslemub  11716  mertenslemi1  11717  mertenslem2  11718  mertensabs  11719  eftlcvg  11869  trilpolemisumle  15769  trilpolemeq1  15771  trilpolemlt1  15772  nconstwlpolemgt0  15795
  Copyright terms: Public domain W3C validator