ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserex Unicode version

Theorem iserex 11650
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
clim2ser.1  |-  Z  =  ( ZZ>= `  M )
iserex.2  |-  ( ph  ->  N  e.  Z )
iserex.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
iserex  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem iserex
StepHypRef Expression
1 seqeq1 10595 . . . . 5  |-  ( N  =  M  ->  seq N (  +  ,  F )  =  seq M (  +  ,  F ) )
21eleq1d 2274 . . . 4  |-  ( N  =  M  ->  (  seq N (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  e.  dom  ~~>  ) )
32bicomd 141 . . 3  |-  ( N  =  M  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
43a1i 9 . 2  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  +  ,  F
)  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) ) )
5 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ph )
6 iserex.2 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  Z )
7 clim2ser.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
86, 7eleqtrdi 2298 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
9 eluzelz 9657 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
108, 9syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
1110zcnd 9496 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
12 ax-1cn 8018 . . . . . . . . 9  |-  1  e.  CC
13 npcan 8281 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
1411, 12, 13sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
1514seqeq1d 10598 . . . . . . 7  |-  ( ph  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
165, 15syl 14 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
17 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  (
ZZ>= `  M ) )
1817, 7eleqtrrdi 2299 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  Z
)
19 iserex.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
205, 19sylan 283 . . . . . . 7  |-  ( ( ( ( ph  /\  ( N  -  1
)  e.  ( ZZ>= `  M ) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  Z
)  ->  ( F `  k )  e.  CC )
21 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
22 climdm 11606 . . . . . . . 8  |-  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
2321, 22sylib 122 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
247, 18, 20, 23clim2ser 11648 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
2516, 24eqbrtrrd 4068 . . . . 5  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
26 climrel 11591 . . . . . 6  |-  Rel  ~~>
2726releldmi 4917 . . . . 5  |-  (  seq N (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) )  ->  seq N (  +  ,  F )  e.  dom  ~~>  )
2825, 27syl 14 . . . 4  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
29 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
3029, 7eleqtrrdi 2299 . . . . . . 7  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  Z )
3130adantr 276 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  Z
)
32 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  ph )
3332, 19sylan 283 . . . . . 6  |-  ( ( ( ( ph  /\  ( N  -  1
)  e.  ( ZZ>= `  M ) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  Z
)  ->  ( F `  k )  e.  CC )
3432, 15syl 14 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
35 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
36 climdm 11606 . . . . . . . 8  |-  (  seq N (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
3735, 36sylib 122 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
3834, 37eqbrtrd 4066 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
397, 31, 33, 38clim2ser2 11649 . . . . 5  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  ~~>  ( (  ~~>  `
 seq N (  +  ,  F ) )  +  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
4026releldmi 4917 . . . . 5  |-  (  seq M (  +  ,  F )  ~~>  ( (  ~~>  `
 seq N (  +  ,  F ) )  +  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
4139, 40syl 14 . . . 4  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
4228, 41impbida 596 . . 3  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
4342ex 115 . 2  |-  ( ph  ->  ( ( N  - 
1 )  e.  (
ZZ>= `  M )  -> 
(  seq M (  +  ,  F )  e. 
dom 
~~> 
<->  seq N (  +  ,  F )  e. 
dom 
~~>  ) ) )
44 uzm1 9679 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
458, 44syl 14 . 2  |-  ( ph  ->  ( N  =  M  \/  ( N  - 
1 )  e.  (
ZZ>= `  M ) ) )
464, 43, 45mpjaod 720 1  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4044   dom cdm 4675   ` cfv 5271  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928    - cmin 8243   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-fz 10131  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590
This theorem is referenced by:  isumsplit  11802  isumrpcl  11805  geolim2  11823  cvgratz  11843  cvgratgt0  11844  mertenslemub  11845  mertenslemi1  11846  mertenslem2  11847  mertensabs  11848  eftlcvg  11998  trilpolemisumle  15977  trilpolemeq1  15979  trilpolemlt1  15980  nconstwlpolemgt0  16003
  Copyright terms: Public domain W3C validator