ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserex Unicode version

Theorem iserex 11765
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
clim2ser.1  |-  Z  =  ( ZZ>= `  M )
iserex.2  |-  ( ph  ->  N  e.  Z )
iserex.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
iserex  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem iserex
StepHypRef Expression
1 seqeq1 10632 . . . . 5  |-  ( N  =  M  ->  seq N (  +  ,  F )  =  seq M (  +  ,  F ) )
21eleq1d 2276 . . . 4  |-  ( N  =  M  ->  (  seq N (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  e.  dom  ~~>  ) )
32bicomd 141 . . 3  |-  ( N  =  M  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
43a1i 9 . 2  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  +  ,  F
)  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) ) )
5 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ph )
6 iserex.2 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  Z )
7 clim2ser.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
86, 7eleqtrdi 2300 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
9 eluzelz 9692 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
108, 9syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
1110zcnd 9531 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
12 ax-1cn 8053 . . . . . . . . 9  |-  1  e.  CC
13 npcan 8316 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
1411, 12, 13sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
1514seqeq1d 10635 . . . . . . 7  |-  ( ph  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
165, 15syl 14 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
17 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  (
ZZ>= `  M ) )
1817, 7eleqtrrdi 2301 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  Z
)
19 iserex.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
205, 19sylan 283 . . . . . . 7  |-  ( ( ( ( ph  /\  ( N  -  1
)  e.  ( ZZ>= `  M ) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  Z
)  ->  ( F `  k )  e.  CC )
21 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
22 climdm 11721 . . . . . . . 8  |-  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
2321, 22sylib 122 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
247, 18, 20, 23clim2ser 11763 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
2516, 24eqbrtrrd 4083 . . . . 5  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
26 climrel 11706 . . . . . 6  |-  Rel  ~~>
2726releldmi 4936 . . . . 5  |-  (  seq N (  +  ,  F )  ~~>  ( (  ~~>  `
 seq M (  +  ,  F ) )  -  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) )  ->  seq N (  +  ,  F )  e.  dom  ~~>  )
2825, 27syl 14 . . . 4  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
29 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
3029, 7eleqtrrdi 2301 . . . . . . 7  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  Z )
3130adantr 276 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  ( N  - 
1 )  e.  Z
)
32 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  ph )
3332, 19sylan 283 . . . . . 6  |-  ( ( ( ( ph  /\  ( N  -  1
)  e.  ( ZZ>= `  M ) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  Z
)  ->  ( F `  k )  e.  CC )
3432, 15syl 14 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  =  seq N (  +  ,  F ) )
35 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
36 climdm 11721 . . . . . . . 8  |-  (  seq N (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
3735, 36sylib 122 . . . . . . 7  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq N (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
3834, 37eqbrtrd 4081 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq ( ( N  -  1 )  +  1 ) (  +  ,  F )  ~~>  (  ~~>  `  seq N (  +  ,  F ) ) )
397, 31, 33, 38clim2ser2 11764 . . . . 5  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  ~~>  ( (  ~~>  `
 seq N (  +  ,  F ) )  +  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) ) )
4026releldmi 4936 . . . . 5  |-  (  seq M (  +  ,  F )  ~~>  ( (  ~~>  `
 seq N (  +  ,  F ) )  +  (  seq M
(  +  ,  F
) `  ( N  -  1 ) ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
4139, 40syl 14 . . . 4  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  seq N (  +  ,  F )  e.  dom  ~~>  )  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
4228, 41impbida 596 . . 3  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
4342ex 115 . 2  |-  ( ph  ->  ( ( N  - 
1 )  e.  (
ZZ>= `  M )  -> 
(  seq M (  +  ,  F )  e. 
dom 
~~> 
<->  seq N (  +  ,  F )  e. 
dom 
~~>  ) ) )
44 uzm1 9714 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
458, 44syl 14 . 2  |-  ( ph  ->  ( N  =  M  \/  ( N  - 
1 )  e.  (
ZZ>= `  M ) ) )
464, 43, 45mpjaod 720 1  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   class class class wbr 4059   dom cdm 4693   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-fz 10166  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by:  isumsplit  11917  isumrpcl  11920  geolim2  11938  cvgratz  11958  cvgratgt0  11959  mertenslemub  11960  mertenslemi1  11961  mertenslem2  11962  mertensabs  11963  eftlcvg  12113  trilpolemisumle  16179  trilpolemeq1  16181  trilpolemlt1  16182  nconstwlpolemgt0  16205
  Copyright terms: Public domain W3C validator