Proof of Theorem climcvg1nlem
| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 9637 |
. . 3
     |
| 2 | | 1zzd 9353 |
. . 3
   |
| 3 | | climcvg1n.f |
. . . . . . . 8
       |
| 4 | 3 | ffvelcdmda 5697 |
. . . . . . 7
 

      |
| 5 | 4 | recld 11103 |
. . . . . 6
 

          |
| 6 | | climcvg1nlem.g |
. . . . . 6
           |
| 7 | 5, 6 | fmptd 5716 |
. . . . 5
       |
| 8 | | climcvg1n.c |
. . . . 5
   |
| 9 | | climcvg1n.cau |
. . . . . 6
                          |
| 10 | | eluznn 9674 |
. . . . . . . . . . . . . . 15
 
       |
| 11 | 10 | adantll 476 |
. . . . . . . . . . . . . 14
        
  |
| 12 | 3 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
        
      |
| 13 | 12, 11 | ffvelcdmd 5698 |
. . . . . . . . . . . . . . 15
        
      |
| 14 | 13 | recld 11103 |
. . . . . . . . . . . . . 14
        
          |
| 15 | | fveq2 5558 |
. . . . . . . . . . . . . . . 16
           |
| 16 | 15 | fveq2d 5562 |
. . . . . . . . . . . . . . 15
                   |
| 17 | 16, 6 | fvmptg 5637 |
. . . . . . . . . . . . . 14
                         |
| 18 | 11, 14, 17 | syl2anc 411 |
. . . . . . . . . . . . 13
        
              |
| 19 | | simplr 528 |
. . . . . . . . . . . . . 14
        
  |
| 20 | 12, 19 | ffvelcdmd 5698 |
. . . . . . . . . . . . . . 15
        
      |
| 21 | 20 | recld 11103 |
. . . . . . . . . . . . . 14
        
          |
| 22 | | fveq2 5558 |
. . . . . . . . . . . . . . . 16
           |
| 23 | 22 | fveq2d 5562 |
. . . . . . . . . . . . . . 15
                   |
| 24 | 23, 6 | fvmptg 5637 |
. . . . . . . . . . . . . 14
                         |
| 25 | 19, 21, 24 | syl2anc 411 |
. . . . . . . . . . . . 13
        
              |
| 26 | 18, 25 | oveq12d 5940 |
. . . . . . . . . . . 12
        
                              |
| 27 | 13, 20 | resubd 11126 |
. . . . . . . . . . . 12
        
                                  |
| 28 | 26, 27 | eqtr4d 2232 |
. . . . . . . . . . 11
        
                          |
| 29 | 28 | fveq2d 5562 |
. . . . . . . . . 10
        
                                  |
| 30 | 13, 20 | subcld 8337 |
. . . . . . . . . . 11
        
            |
| 31 | | absrele 11248 |
. . . . . . . . . . 11
                                             |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . 10
        
                                  |
| 33 | 29, 32 | eqbrtrd 4055 |
. . . . . . . . 9
        
                              |
| 34 | 30 | recld 11103 |
. . . . . . . . . . . . 13
        
                |
| 35 | 34 | recnd 8055 |
. . . . . . . . . . . 12
        
                |
| 36 | 28, 35 | eqeltrd 2273 |
. . . . . . . . . . 11
        
            |
| 37 | 36 | abscld 11346 |
. . . . . . . . . 10
        
                |
| 38 | 30 | abscld 11346 |
. . . . . . . . . 10
        
                |
| 39 | 8 | ad2antrr 488 |
. . . . . . . . . . . 12
        
  |
| 40 | 19 | nnrpd 9769 |
. . . . . . . . . . . 12
        
  |
| 41 | 39, 40 | rpdivcld 9789 |
. . . . . . . . . . 11
        
    |
| 42 | 41 | rpred 9771 |
. . . . . . . . . 10
        
    |
| 43 | | lelttr 8115 |
. . . . . . . . . 10
                                                
                                                  |
| 44 | 37, 38, 42, 43 | syl3anc 1249 |
. . . . . . . . 9
        
               
                                                  |
| 45 | 33, 44 | mpand 429 |
. . . . . . . 8
        
                                    |
| 46 | 45 | ralimdva 2564 |
. . . . . . 7
 

 
                     
                        |
| 47 | 46 | ralimdva 2564 |
. . . . . 6
                         
                         |
| 48 | 9, 47 | mpd 13 |
. . . . 5
                          |
| 49 | 7, 8, 48 | climrecvg1n 11513 |
. . . 4
  |
| 50 | | climdm 11460 |
. . . 4

    |
| 51 | 49, 50 | sylib 122 |
. . 3
     |
| 52 | | nnex 8996 |
. . . 4
 |
| 53 | | fex 5791 |
. . . 4
      
  |
| 54 | 3, 52, 53 | sylancl 413 |
. . 3
   |
| 55 | 4 | imcld 11104 |
. . . . . . 7
 

          |
| 56 | | climcvg1nlem.h |
. . . . . . 7
           |
| 57 | 55, 56 | fmptd 5716 |
. . . . . 6
       |
| 58 | 13 | imcld 11104 |
. . . . . . . . . . . . . . 15
        
          |
| 59 | 15 | fveq2d 5562 |
. . . . . . . . . . . . . . . 16
                   |
| 60 | 59, 56 | fvmptg 5637 |
. . . . . . . . . . . . . . 15
                         |
| 61 | 11, 58, 60 | syl2anc 411 |
. . . . . . . . . . . . . 14
        
              |
| 62 | 20 | imcld 11104 |
. . . . . . . . . . . . . . 15
        
          |
| 63 | 22 | fveq2d 5562 |
. . . . . . . . . . . . . . . 16
                   |
| 64 | 63, 56 | fvmptg 5637 |
. . . . . . . . . . . . . . 15
                         |
| 65 | 19, 62, 64 | syl2anc 411 |
. . . . . . . . . . . . . 14
        
              |
| 66 | 61, 65 | oveq12d 5940 |
. . . . . . . . . . . . 13
        
                              |
| 67 | 13, 20 | imsubd 11127 |
. . . . . . . . . . . . 13
        
                                  |
| 68 | 66, 67 | eqtr4d 2232 |
. . . . . . . . . . . 12
        
                          |
| 69 | 68 | fveq2d 5562 |
. . . . . . . . . . 11
        
                                  |
| 70 | | absimle 11249 |
. . . . . . . . . . . 12
                                             |
| 71 | 30, 70 | syl 14 |
. . . . . . . . . . 11
        
                                  |
| 72 | 69, 71 | eqbrtrd 4055 |
. . . . . . . . . 10
        
                              |
| 73 | 61, 58 | eqeltrd 2273 |
. . . . . . . . . . . . . 14
        
      |
| 74 | 65, 62 | eqeltrd 2273 |
. . . . . . . . . . . . . 14
        
      |
| 75 | 73, 74 | resubcld 8407 |
. . . . . . . . . . . . 13
        
            |
| 76 | 75 | recnd 8055 |
. . . . . . . . . . . 12
        
            |
| 77 | 76 | abscld 11346 |
. . . . . . . . . . 11
        
                |
| 78 | | lelttr 8115 |
. . . . . . . . . . 11
                                                
                                                  |
| 79 | 77, 38, 42, 78 | syl3anc 1249 |
. . . . . . . . . 10
        
               
                                                  |
| 80 | 72, 79 | mpand 429 |
. . . . . . . . 9
        
                                    |
| 81 | 80 | ralimdva 2564 |
. . . . . . . 8
 

 
                     
                        |
| 82 | 81 | ralimdva 2564 |
. . . . . . 7
                         
                         |
| 83 | 9, 82 | mpd 13 |
. . . . . 6
                          |
| 84 | 57, 8, 83 | climrecvg1n 11513 |
. . . . 5
  |
| 85 | | climdm 11460 |
. . . . 5

    |
| 86 | 84, 85 | sylib 122 |
. . . 4
     |
| 87 | | ax-icn 7974 |
. . . . 5
 |
| 88 | 87 | a1i 9 |
. . . 4
   |
| 89 | | climcvg1nlem.j |
. . . . . 6
 
       |
| 90 | 52 | mptex 5788 |
. . . . . 6
         |
| 91 | 89, 90 | eqeltri 2269 |
. . . . 5
 |
| 92 | 91 | a1i 9 |
. . . 4
   |
| 93 | | ax-resscn 7971 |
. . . . . . 7
 |
| 94 | 93 | a1i 9 |
. . . . . 6

  |
| 95 | 57, 94 | fssd 5420 |
. . . . 5
       |
| 96 | 95 | ffvelcdmda 5697 |
. . . 4
 

      |
| 97 | 89 | a1i 9 |
. . . . 5
 

 
        |
| 98 | | fveq2 5558 |
. . . . . . 7
           |
| 99 | 98 | oveq2d 5938 |
. . . . . 6
 
             |
| 100 | 99 | adantl 277 |
. . . . 5
                   |
| 101 | | simpr 110 |
. . . . 5
 

  |
| 102 | 87 | a1i 9 |
. . . . . 6
 

  |
| 103 | 102, 96 | mulcld 8047 |
. . . . 5
 

        |
| 104 | 97, 100, 101, 103 | fvmptd 5642 |
. . . 4
 

            |
| 105 | 1, 2, 86, 88, 92, 96, 104 | climmulc2 11496 |
. . 3
       |
| 106 | 7 | ffvelcdmda 5697 |
. . . 4
 

      |
| 107 | 106 | recnd 8055 |
. . 3
 

      |
| 108 | 104, 103 | eqeltrd 2273 |
. . 3
 

      |
| 109 | 3 | ffvelcdmda 5697 |
. . . . 5
 

      |
| 110 | 109 | replimd 11106 |
. . . 4
 

                          |
| 111 | 109 | recld 11103 |
. . . . . 6
 

          |
| 112 | 101, 111,
17 | syl2anc 411 |
. . . . 5
 

              |
| 113 | 109 | imcld 11104 |
. . . . . . . 8
 

          |
| 114 | 101, 113,
60 | syl2anc 411 |
. . . . . . 7
 

              |
| 115 | 114 | oveq2d 5938 |
. . . . . 6
 

                  |
| 116 | 104, 115 | eqtrd 2229 |
. . . . 5
 

                |
| 117 | 112, 116 | oveq12d 5940 |
. . . 4
 

                                |
| 118 | 110, 117 | eqtr4d 2232 |
. . 3
 

                |
| 119 | 1, 2, 51, 54, 105, 107, 108, 118 | climadd 11491 |
. 2
           |
| 120 | | climrel 11445 |
. . 3
 |
| 121 | 120 | releldmi 4905 |
. 2
        
 |
| 122 | 119, 121 | syl 14 |
1
  |