ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem Unicode version

Theorem climcvg1nlem 11860
Description: Lemma for climcvg1n 11861. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f  |-  ( ph  ->  F : NN --> CC )
climcvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climcvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
climcvg1nlem.g  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
climcvg1nlem.h  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
climcvg1nlem.j  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
Assertion
Ref Expression
climcvg1nlem  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, x    k, G, n    k, H, n, x    k, J    ph, k, n, x
Allowed substitution hints:    C( x)    F( n)    G( x)    J( x, n)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 9758 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9473 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 climcvg1n.f . . . . . . . 8  |-  ( ph  ->  F : NN --> CC )
43ffvelcdmda 5770 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  CC )
54recld 11449 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( Re
`  ( F `  x ) )  e.  RR )
6 climcvg1nlem.g . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
75, 6fmptd 5789 . . . . 5  |-  ( ph  ->  G : NN --> RR )
8 climcvg1n.c . . . . 5  |-  ( ph  ->  C  e.  RR+ )
9 climcvg1n.cau . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
10 eluznn 9795 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
1110adantll 476 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
123ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> CC )
1312, 11ffvelcdmd 5771 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  CC )
1413recld 11449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  k
) )  e.  RR )
15 fveq2 5627 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1615fveq2d 5631 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  k )
) )
1716, 6fvmptg 5710 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  ( Re `  ( F `
 k ) )  e.  RR )  -> 
( G `  k
)  =  ( Re
`  ( F `  k ) ) )
1811, 14, 17syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  =  ( Re `  ( F `
 k ) ) )
19 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2012, 19ffvelcdmd 5771 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  CC )
2120recld 11449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  n
) )  e.  RR )
22 fveq2 5627 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
2322fveq2d 5631 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  n )
) )
2423, 6fvmptg 5710 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( Re `  ( F `
 n ) )  e.  RR )  -> 
( G `  n
)  =  ( Re
`  ( F `  n ) ) )
2519, 21, 24syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  =  ( Re `  ( F `
 n ) ) )
2618, 25oveq12d 6019 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  n ) ) ) )
2713, 20resubd 11472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Re `  ( F `  k )
)  -  ( Re
`  ( F `  n ) ) ) )
2826, 27eqtr4d 2265 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )
2928fveq2d 5631 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  =  ( abs `  ( Re
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
3013, 20subcld 8457 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  k )  -  ( F `  n ) )  e.  CC )
31 absrele 11594 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
3230, 31syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3329, 32eqbrtrd 4105 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3430recld 11449 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
3534recnd 8175 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  CC )
3628, 35eqeltrd 2306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  e.  CC )
3736abscld 11692 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  e.  RR )
3830abscld 11692 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
398ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
4019nnrpd 9890 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
4139, 40rpdivcld 9910 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
4241rpred 9892 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
43 lelttr 8235 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4437, 38, 42, 43syl3anc 1271 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4533, 44mpand 429 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4645ralimdva 2597 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( G `  k )  -  ( G `  n ) ) )  <  ( C  /  n ) ) )
4746ralimdva 2597 . . . . . 6  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) ) )
489, 47mpd 13 . . . . 5  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) )
497, 8, 48climrecvg1n 11859 . . . 4  |-  ( ph  ->  G  e.  dom  ~~>  )
50 climdm 11806 . . . 4  |-  ( G  e.  dom  ~~>  <->  G  ~~>  (  ~~>  `  G
) )
5149, 50sylib 122 . . 3  |-  ( ph  ->  G  ~~>  (  ~~>  `  G
) )
52 nnex 9116 . . . 4  |-  NN  e.  _V
53 fex 5868 . . . 4  |-  ( ( F : NN --> CC  /\  NN  e.  _V )  ->  F  e.  _V )
543, 52, 53sylancl 413 . . 3  |-  ( ph  ->  F  e.  _V )
554imcld 11450 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( Im
`  ( F `  x ) )  e.  RR )
56 climcvg1nlem.h . . . . . . 7  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
5755, 56fmptd 5789 . . . . . 6  |-  ( ph  ->  H : NN --> RR )
5813imcld 11450 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  k
) )  e.  RR )
5915fveq2d 5631 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  k )
) )
6059, 56fvmptg 5710 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  ( Im `  ( F `
 k ) )  e.  RR )  -> 
( H `  k
)  =  ( Im
`  ( F `  k ) ) )
6111, 58, 60syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  =  ( Im `  ( F `
 k ) ) )
6220imcld 11450 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  n
) )  e.  RR )
6322fveq2d 5631 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  n )
) )
6463, 56fvmptg 5710 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( Im `  ( F `
 n ) )  e.  RR )  -> 
( H `  n
)  =  ( Im
`  ( F `  n ) ) )
6519, 62, 64syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  =  ( Im `  ( F `
 n ) ) )
6661, 65oveq12d 6019 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  n ) ) ) )
6713, 20imsubd 11473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Im `  ( F `  k )
)  -  ( Im
`  ( F `  n ) ) ) )
6866, 67eqtr4d 2265 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )
6968fveq2d 5631 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  =  ( abs `  ( Im
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
70 absimle 11595 . . . . . . . . . . . 12  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
7130, 70syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7269, 71eqbrtrd 4105 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7361, 58eqeltrd 2306 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  e.  RR )
7465, 62eqeltrd 2306 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  e.  RR )
7573, 74resubcld 8527 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  RR )
7675recnd 8175 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  CC )
7776abscld 11692 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  e.  RR )
78 lelttr 8235 . . . . . . . . . . 11  |-  ( ( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
7977, 38, 42, 78syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8072, 79mpand 429 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8180ralimdva 2597 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( H `  k )  -  ( H `  n ) ) )  <  ( C  /  n ) ) )
8281ralimdva 2597 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) ) )
839, 82mpd 13 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) )
8457, 8, 83climrecvg1n 11859 . . . . 5  |-  ( ph  ->  H  e.  dom  ~~>  )
85 climdm 11806 . . . . 5  |-  ( H  e.  dom  ~~>  <->  H  ~~>  (  ~~>  `  H
) )
8684, 85sylib 122 . . . 4  |-  ( ph  ->  H  ~~>  (  ~~>  `  H
) )
87 ax-icn 8094 . . . . 5  |-  _i  e.  CC
8887a1i 9 . . . 4  |-  ( ph  ->  _i  e.  CC )
89 climcvg1nlem.j . . . . . 6  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
9052mptex 5865 . . . . . 6  |-  ( x  e.  NN  |->  ( _i  x.  ( H `  x ) ) )  e.  _V
9189, 90eqeltri 2302 . . . . 5  |-  J  e. 
_V
9291a1i 9 . . . 4  |-  ( ph  ->  J  e.  _V )
93 ax-resscn 8091 . . . . . . 7  |-  RR  C_  CC
9493a1i 9 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
9557, 94fssd 5486 . . . . 5  |-  ( ph  ->  H : NN --> CC )
9695ffvelcdmda 5770 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  e.  CC )
9789a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) ) )
98 fveq2 5627 . . . . . . 7  |-  ( x  =  k  ->  ( H `  x )  =  ( H `  k ) )
9998oveq2d 6017 . . . . . 6  |-  ( x  =  k  ->  (
_i  x.  ( H `  x ) )  =  ( _i  x.  ( H `  k )
) )
10099adantl 277 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  =  k )  -> 
( _i  x.  ( H `  x )
)  =  ( _i  x.  ( H `  k ) ) )
101 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
10287a1i 9 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  _i  e.  CC )
103102, 96mulcld 8167 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  e.  CC )
10497, 100, 101, 103fvmptd 5715 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  ( H `  k )
) )
1051, 2, 86, 88, 92, 96, 104climmulc2 11842 . . 3  |-  ( ph  ->  J  ~~>  ( _i  x.  ( 
~~>  `  H ) ) )
1067ffvelcdmda 5770 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
107106recnd 8175 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  CC )
108104, 103eqeltrd 2306 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  e.  CC )
1093ffvelcdmda 5770 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
110109replimd 11452 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
111109recld 11449 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  ( F `  k ) )  e.  RR )
112101, 111, 17syl2anc 411 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( Re `  ( F `  k )
) )
113109imcld 11450 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( Im
`  ( F `  k ) )  e.  RR )
114101, 113, 60syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( Im `  ( F `  k )
) )
115114oveq2d 6017 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
116104, 115eqtrd 2262 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
117112, 116oveq12d 6019 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k )  +  ( J `  k ) )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
118110, 117eqtr4d 2265 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( G `  k )  +  ( J `  k ) ) )
1191, 2, 51, 54, 105, 107, 108, 118climadd 11837 . 2  |-  ( ph  ->  F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) ) )
120 climrel 11791 . . 3  |-  Rel  ~~>
121120releldmi 4963 . 2  |-  ( F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) )  ->  F  e.  dom  ~~>  )
122119, 121syl 14 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   dom cdm 4719   -->wf 5314   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   1c1 8000   _ici 8001    + caddc 8002    x. cmul 8004    < clt 8181    <_ cle 8182    - cmin 8317    / cdiv 8819   NNcn 9110   ZZ>=cuz 9722   RR+crp 9849   Recre 11351   Imcim 11352   abscabs 11508    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790
This theorem is referenced by:  climcvg1n  11861
  Copyright terms: Public domain W3C validator