ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem Unicode version

Theorem climcvg1nlem 10702
Description: Lemma for climcvg1n 10703. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f  |-  ( ph  ->  F : NN --> CC )
climcvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climcvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
climcvg1nlem.g  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
climcvg1nlem.h  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
climcvg1nlem.j  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
Assertion
Ref Expression
climcvg1nlem  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, x    k, G, n    k, H, n, x    k, J    ph, k, n, x
Allowed substitution hints:    C( x)    F( n)    G( x)    J( x, n)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 9023 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 8747 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 climcvg1n.f . . . . . . . 8  |-  ( ph  ->  F : NN --> CC )
43ffvelrnda 5418 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  CC )
54recld 10337 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( Re
`  ( F `  x ) )  e.  RR )
6 climcvg1nlem.g . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
75, 6fmptd 5436 . . . . 5  |-  ( ph  ->  G : NN --> RR )
8 climcvg1n.c . . . . 5  |-  ( ph  ->  C  e.  RR+ )
9 climcvg1n.cau . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
10 eluznn 9056 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
1110adantll 460 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
123ad2antrr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> CC )
1312, 11ffvelrnd 5419 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  CC )
1413recld 10337 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  k
) )  e.  RR )
15 fveq2 5289 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1615fveq2d 5293 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  k )
) )
1716, 6fvmptg 5364 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  ( Re `  ( F `
 k ) )  e.  RR )  -> 
( G `  k
)  =  ( Re
`  ( F `  k ) ) )
1811, 14, 17syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  =  ( Re `  ( F `
 k ) ) )
19 simplr 497 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2012, 19ffvelrnd 5419 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  CC )
2120recld 10337 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  n
) )  e.  RR )
22 fveq2 5289 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
2322fveq2d 5293 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  n )
) )
2423, 6fvmptg 5364 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( Re `  ( F `
 n ) )  e.  RR )  -> 
( G `  n
)  =  ( Re
`  ( F `  n ) ) )
2519, 21, 24syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  =  ( Re `  ( F `
 n ) ) )
2618, 25oveq12d 5652 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  n ) ) ) )
2713, 20resubd 10360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Re `  ( F `  k )
)  -  ( Re
`  ( F `  n ) ) ) )
2826, 27eqtr4d 2123 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )
2928fveq2d 5293 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  =  ( abs `  ( Re
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
3013, 20subcld 7772 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  k )  -  ( F `  n ) )  e.  CC )
31 absrele 10481 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
3230, 31syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3329, 32eqbrtrd 3857 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3430recld 10337 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
3534recnd 7495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  CC )
3628, 35eqeltrd 2164 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  e.  CC )
3736abscld 10579 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  e.  RR )
3830abscld 10579 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
398ad2antrr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
4019nnrpd 9141 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
4139, 40rpdivcld 9160 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
4241rpred 9142 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
43 lelttr 7552 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4437, 38, 42, 43syl3anc 1174 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4533, 44mpand 420 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4645ralimdva 2441 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( G `  k )  -  ( G `  n ) ) )  <  ( C  /  n ) ) )
4746ralimdva 2441 . . . . . 6  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) ) )
489, 47mpd 13 . . . . 5  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) )
497, 8, 48climrecvg1n 10701 . . . 4  |-  ( ph  ->  G  e.  dom  ~~>  )
50 climdm 10647 . . . 4  |-  ( G  e.  dom  ~~>  <->  G  ~~>  (  ~~>  `  G
) )
5149, 50sylib 120 . . 3  |-  ( ph  ->  G  ~~>  (  ~~>  `  G
) )
52 nnex 8400 . . . 4  |-  NN  e.  _V
53 fex 5506 . . . 4  |-  ( ( F : NN --> CC  /\  NN  e.  _V )  ->  F  e.  _V )
543, 52, 53sylancl 404 . . 3  |-  ( ph  ->  F  e.  _V )
554imcld 10338 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( Im
`  ( F `  x ) )  e.  RR )
56 climcvg1nlem.h . . . . . . 7  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
5755, 56fmptd 5436 . . . . . 6  |-  ( ph  ->  H : NN --> RR )
5813imcld 10338 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  k
) )  e.  RR )
5915fveq2d 5293 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  k )
) )
6059, 56fvmptg 5364 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  ( Im `  ( F `
 k ) )  e.  RR )  -> 
( H `  k
)  =  ( Im
`  ( F `  k ) ) )
6111, 58, 60syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  =  ( Im `  ( F `
 k ) ) )
6220imcld 10338 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  n
) )  e.  RR )
6322fveq2d 5293 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  n )
) )
6463, 56fvmptg 5364 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( Im `  ( F `
 n ) )  e.  RR )  -> 
( H `  n
)  =  ( Im
`  ( F `  n ) ) )
6519, 62, 64syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  =  ( Im `  ( F `
 n ) ) )
6661, 65oveq12d 5652 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  n ) ) ) )
6713, 20imsubd 10361 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Im `  ( F `  k )
)  -  ( Im
`  ( F `  n ) ) ) )
6866, 67eqtr4d 2123 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )
6968fveq2d 5293 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  =  ( abs `  ( Im
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
70 absimle 10482 . . . . . . . . . . . 12  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
7130, 70syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7269, 71eqbrtrd 3857 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7361, 58eqeltrd 2164 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  e.  RR )
7465, 62eqeltrd 2164 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  e.  RR )
7573, 74resubcld 7838 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  RR )
7675recnd 7495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  CC )
7776abscld 10579 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  e.  RR )
78 lelttr 7552 . . . . . . . . . . 11  |-  ( ( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
7977, 38, 42, 78syl3anc 1174 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8072, 79mpand 420 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8180ralimdva 2441 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( H `  k )  -  ( H `  n ) ) )  <  ( C  /  n ) ) )
8281ralimdva 2441 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) ) )
839, 82mpd 13 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) )
8457, 8, 83climrecvg1n 10701 . . . . 5  |-  ( ph  ->  H  e.  dom  ~~>  )
85 climdm 10647 . . . . 5  |-  ( H  e.  dom  ~~>  <->  H  ~~>  (  ~~>  `  H
) )
8684, 85sylib 120 . . . 4  |-  ( ph  ->  H  ~~>  (  ~~>  `  H
) )
87 ax-icn 7419 . . . . 5  |-  _i  e.  CC
8887a1i 9 . . . 4  |-  ( ph  ->  _i  e.  CC )
89 climcvg1nlem.j . . . . . 6  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
9052mptex 5505 . . . . . 6  |-  ( x  e.  NN  |->  ( _i  x.  ( H `  x ) ) )  e.  _V
9189, 90eqeltri 2160 . . . . 5  |-  J  e. 
_V
9291a1i 9 . . . 4  |-  ( ph  ->  J  e.  _V )
93 ax-resscn 7416 . . . . . . 7  |-  RR  C_  CC
9493a1i 9 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
9557, 94fssd 5158 . . . . 5  |-  ( ph  ->  H : NN --> CC )
9695ffvelrnda 5418 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  e.  CC )
9789a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) ) )
98 fveq2 5289 . . . . . . 7  |-  ( x  =  k  ->  ( H `  x )  =  ( H `  k ) )
9998oveq2d 5650 . . . . . 6  |-  ( x  =  k  ->  (
_i  x.  ( H `  x ) )  =  ( _i  x.  ( H `  k )
) )
10099adantl 271 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  =  k )  -> 
( _i  x.  ( H `  x )
)  =  ( _i  x.  ( H `  k ) ) )
101 simpr 108 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
10287a1i 9 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  _i  e.  CC )
103102, 96mulcld 7487 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  e.  CC )
10497, 100, 101, 103fvmptd 5369 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  ( H `  k )
) )
1051, 2, 86, 88, 92, 96, 104climmulc2 10683 . . 3  |-  ( ph  ->  J  ~~>  ( _i  x.  ( 
~~>  `  H ) ) )
1067ffvelrnda 5418 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
107106recnd 7495 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  CC )
108104, 103eqeltrd 2164 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  e.  CC )
1093ffvelrnda 5418 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
110109replimd 10340 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
111109recld 10337 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  ( F `  k ) )  e.  RR )
112101, 111, 17syl2anc 403 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( Re `  ( F `  k )
) )
113109imcld 10338 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( Im
`  ( F `  k ) )  e.  RR )
114101, 113, 60syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( Im `  ( F `  k )
) )
115114oveq2d 5650 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
116104, 115eqtrd 2120 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
117112, 116oveq12d 5652 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k )  +  ( J `  k ) )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
118110, 117eqtr4d 2123 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( G `  k )  +  ( J `  k ) ) )
1191, 2, 51, 54, 105, 107, 108, 118climadd 10678 . 2  |-  ( ph  ->  F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) ) )
120 climrel 10632 . . 3  |-  Rel  ~~>
121120releldmi 4662 . 2  |-  ( F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) )  ->  F  e.  dom  ~~>  )
122119, 121syl 14 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   A.wral 2359   _Vcvv 2619    C_ wss 2997   class class class wbr 3837    |-> cmpt 3891   dom cdm 4428   -->wf 4998   ` cfv 5002  (class class class)co 5634   CCcc 7327   RRcr 7328   1c1 7330   _ici 7331    + caddc 7332    x. cmul 7334    < clt 7501    <_ cle 7502    - cmin 7632    / cdiv 8113   NNcn 8394   ZZ>=cuz 8988   RR+crp 9103   Recre 10239   Imcim 10240   abscabs 10395    ~~> cli 10630
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-clim 10631
This theorem is referenced by:  climcvg1n  10703
  Copyright terms: Public domain W3C validator