| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releldmi | GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| releldm.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | releldm 4935 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 class class class wbr 4062 dom cdm 4696 Rel wrel 4701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-dm 4706 |
| This theorem is referenced by: iserex 11816 climrecvg1n 11825 climcvg1nlem 11826 fsum3cvg3 11873 trirecip 11978 |
| Copyright terms: Public domain | W3C validator |