ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldmb Unicode version

Theorem releldmb 4899
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
releldmb  |-  ( Rel 
R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem releldmb
StepHypRef Expression
1 eldmg 4857 . . 3  |-  ( A  e.  dom  R  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
21ibi 176 . 2  |-  ( A  e.  dom  R  ->  E. x  A R x )
3 releldm 4897 . . . 4  |-  ( ( Rel  R  /\  A R x )  ->  A  e.  dom  R )
43ex 115 . . 3  |-  ( Rel 
R  ->  ( A R x  ->  A  e. 
dom  R ) )
54exlimdv 1830 . 2  |-  ( Rel 
R  ->  ( E. x  A R x  ->  A  e.  dom  R ) )
62, 5impbid2 143 1  |-  ( Rel 
R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1503    e. wcel 2164   class class class wbr 4029   dom cdm 4659   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-dm 4669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator