ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldmb Unicode version

Theorem releldmb 4685
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
releldmb  |-  ( Rel 
R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem releldmb
StepHypRef Expression
1 eldmg 4644 . . 3  |-  ( A  e.  dom  R  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
21ibi 175 . 2  |-  ( A  e.  dom  R  ->  E. x  A R x )
3 releldm 4683 . . . 4  |-  ( ( Rel  R  /\  A R x )  ->  A  e.  dom  R )
43ex 114 . . 3  |-  ( Rel 
R  ->  ( A R x  ->  A  e. 
dom  R ) )
54exlimdv 1748 . 2  |-  ( Rel 
R  ->  ( E. x  A R x  ->  A  e.  dom  R ) )
62, 5impbid2 142 1  |-  ( Rel 
R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1427    e. wcel 1439   class class class wbr 3851   dom cdm 4452   Rel wrel 4457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-dm 4462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator