ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelrn GIF version

Theorem relelrn 4821
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
relelrn ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)

Proof of Theorem relelrn
StepHypRef Expression
1 brrelex 4625 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
2 brrelex2 4626 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
3 simpr 109 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴𝑅𝐵)
4 brelrng 4816 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
51, 2, 3, 4syl3anc 1220 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2128  Vcvv 2712   class class class wbr 3965  ran crn 4586  Rel wrel 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4591  df-rel 4592  df-cnv 4593  df-dm 4595  df-rn 4596
This theorem is referenced by:  relelrnb  4823  relelrni  4825  relfvssunirn  5483
  Copyright terms: Public domain W3C validator