ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelrn GIF version

Theorem relelrn 4922
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
relelrn ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)

Proof of Theorem relelrn
StepHypRef Expression
1 brrelex 4722 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
2 brrelex2 4723 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
3 simpr 110 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴𝑅𝐵)
4 brelrng 4917 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
51, 2, 3, 4syl3anc 1250 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Vcvv 2773   class class class wbr 4050  ran crn 4683  Rel wrel 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-dm 4692  df-rn 4693
This theorem is referenced by:  relelrnb  4924  relelrni  4926  relfvssunirn  5604
  Copyright terms: Public domain W3C validator