Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relelrn | GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.) |
Ref | Expression |
---|---|
relelrn | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex 4625 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
2 | brrelex2 4626 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | simpr 109 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | brelrng 4816 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) | |
5 | 1, 2, 3, 4 | syl3anc 1220 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 Vcvv 2712 class class class wbr 3965 ran crn 4586 Rel wrel 4590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4591 df-rel 4592 df-cnv 4593 df-dm 4595 df-rn 4596 |
This theorem is referenced by: relelrnb 4823 relelrni 4825 relfvssunirn 5483 |
Copyright terms: Public domain | W3C validator |