ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfvresima Unicode version

Theorem resfvresima 5880
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
resfvresima.f  |-  ( ph  ->  Fun  F )
resfvresima.s  |-  ( ph  ->  S  C_  dom  F )
resfvresima.x  |-  ( ph  ->  X  e.  S )
Assertion
Ref Expression
resfvresima  |-  ( ph  ->  ( ( H  |`  ( F " S ) ) `  ( ( F  |`  S ) `  X ) )  =  ( H `  ( F `  X )
) )

Proof of Theorem resfvresima
StepHypRef Expression
1 resfvresima.x . . . 4  |-  ( ph  ->  X  e.  S )
21fvresd 5654 . . 3  |-  ( ph  ->  ( ( F  |`  S ) `  X
)  =  ( F `
 X ) )
32fveq2d 5633 . 2  |-  ( ph  ->  ( ( H  |`  ( F " S ) ) `  ( ( F  |`  S ) `  X ) )  =  ( ( H  |`  ( F " S ) ) `  ( F `
 X ) ) )
4 resfvresima.f . . . . 5  |-  ( ph  ->  Fun  F )
5 resfvresima.s . . . . 5  |-  ( ph  ->  S  C_  dom  F )
64, 5jca 306 . . . 4  |-  ( ph  ->  ( Fun  F  /\  S  C_  dom  F ) )
7 funfvima2 5876 . . . 4  |-  ( ( Fun  F  /\  S  C_ 
dom  F )  -> 
( X  e.  S  ->  ( F `  X
)  e.  ( F
" S ) ) )
86, 1, 7sylc 62 . . 3  |-  ( ph  ->  ( F `  X
)  e.  ( F
" S ) )
98fvresd 5654 . 2  |-  ( ph  ->  ( ( H  |`  ( F " S ) ) `  ( F `
 X ) )  =  ( H `  ( F `  X ) ) )
103, 9eqtrd 2262 1  |-  ( ph  ->  ( ( H  |`  ( F " S ) ) `  ( ( F  |`  S ) `  X ) )  =  ( H `  ( F `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   dom cdm 4719    |` cres 4721   "cima 4722   Fun wfun 5312   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  wlkres  16098
  Copyright terms: Public domain W3C validator