ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 Unicode version

Theorem foima2 5653
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5350). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Distinct variable groups:    x, A    x, Y    x, F
Allowed substitution hint:    B( x)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5350 . . . 4  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
21eqcomd 2145 . . 3  |-  ( F : A -onto-> B  ->  B  =  ( F " A ) )
32eleq2d 2209 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  Y  e.  ( F " A ) ) )
4 fofn 5347 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
5 ssid 3117 . . 3  |-  A  C_  A
6 fvelimab 5477 . . . 4  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  ( F `  x )  =  Y ) )
7 eqcom 2141 . . . . 5  |-  ( ( F `  x )  =  Y  <->  Y  =  ( F `  x ) )
87rexbii 2442 . . . 4  |-  ( E. x  e.  A  ( F `  x )  =  Y  <->  E. x  e.  A  Y  =  ( F `  x ) )
96, 8syl6bb 195 . . 3  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
104, 5, 9sylancl 409 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
113, 10bitrd 187 1  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   "cima 4542    Fn wfn 5118   -onto->wfo 5121   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131
This theorem is referenced by:  foelrn  5654
  Copyright terms: Public domain W3C validator