ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 Unicode version

Theorem foima2 5875
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5553). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Distinct variable groups:    x, A    x, Y    x, F
Allowed substitution hint:    B( x)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5553 . . . 4  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
21eqcomd 2235 . . 3  |-  ( F : A -onto-> B  ->  B  =  ( F " A ) )
32eleq2d 2299 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  Y  e.  ( F " A ) ) )
4 fofn 5550 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
5 ssid 3244 . . 3  |-  A  C_  A
6 fvelimab 5690 . . . 4  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  ( F `  x )  =  Y ) )
7 eqcom 2231 . . . . 5  |-  ( ( F `  x )  =  Y  <->  Y  =  ( F `  x ) )
87rexbii 2537 . . . 4  |-  ( E. x  e.  A  ( F `  x )  =  Y  <->  E. x  e.  A  Y  =  ( F `  x ) )
96, 8bitrdi 196 . . 3  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
104, 5, 9sylancl 413 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
113, 10bitrd 188 1  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509    C_ wss 3197   "cima 4722    Fn wfn 5313   -onto->wfo 5316   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326
This theorem is referenced by:  foelrn  5876
  Copyright terms: Public domain W3C validator