ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 Unicode version

Theorem foima2 5843
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5525). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Distinct variable groups:    x, A    x, Y    x, F
Allowed substitution hint:    B( x)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5525 . . . 4  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
21eqcomd 2213 . . 3  |-  ( F : A -onto-> B  ->  B  =  ( F " A ) )
32eleq2d 2277 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  Y  e.  ( F " A ) ) )
4 fofn 5522 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
5 ssid 3221 . . 3  |-  A  C_  A
6 fvelimab 5658 . . . 4  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  ( F `  x )  =  Y ) )
7 eqcom 2209 . . . . 5  |-  ( ( F `  x )  =  Y  <->  Y  =  ( F `  x ) )
87rexbii 2515 . . . 4  |-  ( E. x  e.  A  ( F `  x )  =  Y  <->  E. x  e.  A  Y  =  ( F `  x ) )
96, 8bitrdi 196 . . 3  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
104, 5, 9sylancl 413 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
113, 10bitrd 188 1  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   "cima 4696    Fn wfn 5285   -onto->wfo 5288   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298
This theorem is referenced by:  foelrn  5844
  Copyright terms: Public domain W3C validator