ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 Unicode version

Theorem foima2 5754
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5445). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Distinct variable groups:    x, A    x, Y    x, F
Allowed substitution hint:    B( x)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5445 . . . 4  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
21eqcomd 2183 . . 3  |-  ( F : A -onto-> B  ->  B  =  ( F " A ) )
32eleq2d 2247 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  Y  e.  ( F " A ) ) )
4 fofn 5442 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
5 ssid 3177 . . 3  |-  A  C_  A
6 fvelimab 5574 . . . 4  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  ( F `  x )  =  Y ) )
7 eqcom 2179 . . . . 5  |-  ( ( F `  x )  =  Y  <->  Y  =  ( F `  x ) )
87rexbii 2484 . . . 4  |-  ( E. x  e.  A  ( F `  x )  =  Y  <->  E. x  e.  A  Y  =  ( F `  x ) )
96, 8bitrdi 196 . . 3  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
104, 5, 9sylancl 413 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
113, 10bitrd 188 1  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456    C_ wss 3131   "cima 4631    Fn wfn 5213   -onto->wfo 5216   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226
This theorem is referenced by:  foelrn  5755
  Copyright terms: Public domain W3C validator