ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima2 Unicode version

Theorem foima2 5795
Description: Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5482). (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foima2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Distinct variable groups:    x, A    x, Y    x, F
Allowed substitution hint:    B( x)

Proof of Theorem foima2
StepHypRef Expression
1 foima 5482 . . . 4  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
21eqcomd 2199 . . 3  |-  ( F : A -onto-> B  ->  B  =  ( F " A ) )
32eleq2d 2263 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  Y  e.  ( F " A ) ) )
4 fofn 5479 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
5 ssid 3200 . . 3  |-  A  C_  A
6 fvelimab 5614 . . . 4  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  ( F `  x )  =  Y ) )
7 eqcom 2195 . . . . 5  |-  ( ( F `  x )  =  Y  <->  Y  =  ( F `  x ) )
87rexbii 2501 . . . 4  |-  ( E. x  e.  A  ( F `  x )  =  Y  <->  E. x  e.  A  Y  =  ( F `  x ) )
96, 8bitrdi 196 . . 3  |-  ( ( F  Fn  A  /\  A  C_  A )  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
104, 5, 9sylancl 413 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  ( F " A )  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
113, 10bitrd 188 1  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  Y  =  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473    C_ wss 3154   "cima 4663    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263
This theorem is referenced by:  foelrn  5796
  Copyright terms: Public domain W3C validator