ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima2 Unicode version

Theorem funfvima2 5798
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
Assertion
Ref Expression
funfvima2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )

Proof of Theorem funfvima2
StepHypRef Expression
1 ssel 3178 . . 3  |-  ( A 
C_  dom  F  ->  ( B  e.  A  ->  B  e.  dom  F ) )
2 funfvima 5797 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
32ex 115 . . . . 5  |-  ( Fun 
F  ->  ( B  e.  dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
43com23 78 . . . 4  |-  ( Fun 
F  ->  ( B  e.  A  ->  ( B  e.  dom  F  -> 
( F `  B
)  e.  ( F
" A ) ) ) )
54a2d 26 . . 3  |-  ( Fun 
F  ->  ( ( B  e.  A  ->  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
61, 5syl5 32 . 2  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A
) ) ) )
76imp 124 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    C_ wss 3157   dom cdm 4664   "cima 4667   Fun wfun 5253   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267
This theorem is referenced by:  fnfvima  5800  phimullem  12418  qtopbasss  14841  tgqioo  14875  plyaddlem1  15067  plymullem1  15068
  Copyright terms: Public domain W3C validator