ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima2 Unicode version

Theorem funfvima2 5749
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
Assertion
Ref Expression
funfvima2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )

Proof of Theorem funfvima2
StepHypRef Expression
1 ssel 3149 . . 3  |-  ( A 
C_  dom  F  ->  ( B  e.  A  ->  B  e.  dom  F ) )
2 funfvima 5748 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
32ex 115 . . . . 5  |-  ( Fun 
F  ->  ( B  e.  dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
43com23 78 . . . 4  |-  ( Fun 
F  ->  ( B  e.  A  ->  ( B  e.  dom  F  -> 
( F `  B
)  e.  ( F
" A ) ) ) )
54a2d 26 . . 3  |-  ( Fun 
F  ->  ( ( B  e.  A  ->  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
61, 5syl5 32 . 2  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A
) ) ) )
76imp 124 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148    C_ wss 3129   dom cdm 4626   "cima 4629   Fun wfun 5210   ` cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224
This theorem is referenced by:  fnfvima  5751  phimullem  12219  qtopbasss  13914  tgqioo  13940
  Copyright terms: Public domain W3C validator