ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresd Unicode version

Theorem fvresd 5532
Description: The value of a restricted function, deduction version of fvres 5531. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
fvresd.1  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
fvresd  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )

Proof of Theorem fvresd
StepHypRef Expression
1 fvresd.1 . 2  |-  ( ph  ->  A  e.  B )
2 fvres 5531 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
31, 2syl 14 1  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146    |` cres 4622   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-res 4632  df-iota 5170  df-fv 5216
This theorem is referenced by:  difinfsn  7089  upxp  13352  uptx  13354  reeflog  13864  relogef  13865  trilpolemlt1  14359
  Copyright terms: Public domain W3C validator