ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresd Unicode version

Theorem fvresd 5601
Description: The value of a restricted function, deduction version of fvres 5600. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
fvresd.1  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
fvresd  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )

Proof of Theorem fvresd
StepHypRef Expression
1 fvresd.1 . 2  |-  ( ph  ->  A  e.  B )
2 fvres 5600 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
31, 2syl 14 1  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    |` cres 4677   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-res 4687  df-iota 5232  df-fv 5279
This theorem is referenced by:  difinfsn  7202  seqf1oglem2  10665  gsumsplit1r  13230  resmhm  13319  resghm  13596  upxp  14744  uptx  14746  reeflog  15335  relogef  15336  mpodvdsmulf1o  15462  trilpolemlt1  15980
  Copyright terms: Public domain W3C validator