ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresd Unicode version

Theorem fvresd 5652
Description: The value of a restricted function, deduction version of fvres 5651. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
fvresd.1  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
fvresd  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )

Proof of Theorem fvresd
StepHypRef Expression
1 fvresd.1 . 2  |-  ( ph  ->  A  e.  B )
2 fvres 5651 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
31, 2syl 14 1  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    |` cres 4721   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-res 4731  df-iota 5278  df-fv 5326
This theorem is referenced by:  difinfsn  7267  seqf1oglem2  10742  gsumsplit1r  13431  resmhm  13520  resghm  13797  upxp  14946  uptx  14948  reeflog  15537  relogef  15538  mpodvdsmulf1o  15664  trilpolemlt1  16409
  Copyright terms: Public domain W3C validator