ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresd Unicode version

Theorem fvresd 5586
Description: The value of a restricted function, deduction version of fvres 5585. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
fvresd.1  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
fvresd  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )

Proof of Theorem fvresd
StepHypRef Expression
1 fvresd.1 . 2  |-  ( ph  ->  A  e.  B )
2 fvres 5585 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
31, 2syl 14 1  |-  ( ph  ->  ( ( F  |`  B ) `  A
)  =  ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    |` cres 4666   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-res 4676  df-iota 5220  df-fv 5267
This theorem is referenced by:  difinfsn  7175  seqf1oglem2  10629  gsumsplit1r  13100  resmhm  13189  resghm  13466  upxp  14592  uptx  14594  reeflog  15183  relogef  15184  mpodvdsmulf1o  15310  trilpolemlt1  15772
  Copyright terms: Public domain W3C validator