ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptd Unicode version

Theorem resmptd 4994
Description: Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
resmptd.b  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
resmptd  |-  ( ph  ->  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem resmptd
StepHypRef Expression
1 resmptd.b . 2  |-  ( ph  ->  B  C_  A )
2 resmpt 4991 . 2  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3154    |-> cmpt 4091    |` cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-mpt 4093  df-xp 4666  df-rel 4667  df-res 4672
This theorem is referenced by:  fisumss  11538  fprodssdc  11736  conjsubgen  13351  gsumfzconst  13414  cnmpt1res  14475  bj-charfundcALT  15371
  Copyright terms: Public domain W3C validator