ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptd GIF version

Theorem resmptd 4942
Description: Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
resmptd.b (𝜑𝐵𝐴)
Assertion
Ref Expression
resmptd (𝜑 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem resmptd
StepHypRef Expression
1 resmptd.b . 2 (𝜑𝐵𝐴)
2 resmpt 4939 . 2 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
31, 2syl 14 1 (𝜑 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wss 3121  cmpt 4050  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-res 4623
This theorem is referenced by:  fisumss  11355  fprodssdc  11553  cnmpt1res  13090  bj-charfundcALT  13844
  Copyright terms: Public domain W3C validator