ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptf Unicode version

Theorem resmptf 4934
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a  |-  F/_ x A
resmptf.b  |-  F/_ x B
Assertion
Ref Expression
resmptf  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )

Proof of Theorem resmptf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resmpt 4932 . 2  |-  ( B 
C_  A  ->  (
( y  e.  A  |-> 
[_ y  /  x ]_ C )  |`  B )  =  ( y  e.  B  |->  [_ y  /  x ]_ C ) )
2 resmptf.a . . . 4  |-  F/_ x A
3 nfcv 2308 . . . 4  |-  F/_ y A
4 nfcv 2308 . . . 4  |-  F/_ y C
5 nfcsb1v 3078 . . . 4  |-  F/_ x [_ y  /  x ]_ C
6 csbeq1a 3054 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
72, 3, 4, 5, 6cbvmptf 4076 . . 3  |-  ( x  e.  A  |->  C )  =  ( y  e.  A  |->  [_ y  /  x ]_ C )
87reseq1i 4880 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( ( y  e.  A  |->  [_ y  /  x ]_ C )  |`  B )
9 resmptf.b . . 3  |-  F/_ x B
10 nfcv 2308 . . 3  |-  F/_ y B
119, 10, 4, 5, 6cbvmptf 4076 . 2  |-  ( x  e.  B  |->  C )  =  ( y  e.  B  |->  [_ y  /  x ]_ C )
121, 8, 113eqtr4g 2224 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   F/_wnfc 2295   [_csb 3045    C_ wss 3116    |-> cmpt 4043    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator