ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptf Unicode version

Theorem resmptf 5028
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a  |-  F/_ x A
resmptf.b  |-  F/_ x B
Assertion
Ref Expression
resmptf  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )

Proof of Theorem resmptf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resmpt 5026 . 2  |-  ( B 
C_  A  ->  (
( y  e.  A  |-> 
[_ y  /  x ]_ C )  |`  B )  =  ( y  e.  B  |->  [_ y  /  x ]_ C ) )
2 resmptf.a . . . 4  |-  F/_ x A
3 nfcv 2350 . . . 4  |-  F/_ y A
4 nfcv 2350 . . . 4  |-  F/_ y C
5 nfcsb1v 3134 . . . 4  |-  F/_ x [_ y  /  x ]_ C
6 csbeq1a 3110 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
72, 3, 4, 5, 6cbvmptf 4154 . . 3  |-  ( x  e.  A  |->  C )  =  ( y  e.  A  |->  [_ y  /  x ]_ C )
87reseq1i 4974 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( ( y  e.  A  |->  [_ y  /  x ]_ C )  |`  B )
9 resmptf.b . . 3  |-  F/_ x B
10 nfcv 2350 . . 3  |-  F/_ y B
119, 10, 4, 5, 6cbvmptf 4154 . 2  |-  ( x  e.  B  |->  C )  =  ( y  e.  B  |->  [_ y  /  x ]_ C )
121, 8, 113eqtr4g 2265 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   F/_wnfc 2337   [_csb 3101    C_ wss 3174    |-> cmpt 4121    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-res 4705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator