ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptf Unicode version

Theorem resmptf 5009
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a  |-  F/_ x A
resmptf.b  |-  F/_ x B
Assertion
Ref Expression
resmptf  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )

Proof of Theorem resmptf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resmpt 5007 . 2  |-  ( B 
C_  A  ->  (
( y  e.  A  |-> 
[_ y  /  x ]_ C )  |`  B )  =  ( y  e.  B  |->  [_ y  /  x ]_ C ) )
2 resmptf.a . . . 4  |-  F/_ x A
3 nfcv 2348 . . . 4  |-  F/_ y A
4 nfcv 2348 . . . 4  |-  F/_ y C
5 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ C
6 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
72, 3, 4, 5, 6cbvmptf 4138 . . 3  |-  ( x  e.  A  |->  C )  =  ( y  e.  A  |->  [_ y  /  x ]_ C )
87reseq1i 4955 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( ( y  e.  A  |->  [_ y  /  x ]_ C )  |`  B )
9 resmptf.b . . 3  |-  F/_ x B
10 nfcv 2348 . . 3  |-  F/_ y B
119, 10, 4, 5, 6cbvmptf 4138 . 2  |-  ( x  e.  B  |->  C )  =  ( y  e.  B  |->  [_ y  /  x ]_ C )
121, 8, 113eqtr4g 2263 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   F/_wnfc 2335   [_csb 3093    C_ wss 3166    |-> cmpt 4105    |` cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-mpt 4107  df-xp 4681  df-rel 4682  df-res 4687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator