ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfres2 Unicode version

Theorem dfres2 5057
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
dfres2  |-  ( R  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
Distinct variable groups:    x, y, A   
x, R, y

Proof of Theorem dfres2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5033 . 2  |-  Rel  ( R  |`  A )
2 relopab 4848 . 2  |-  Rel  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
3 vex 2802 . . . . 5  |-  w  e. 
_V
43brres 5011 . . . 4  |-  ( z ( R  |`  A ) w  <->  ( z R w  /\  z  e.  A ) )
5 df-br 4084 . . . 4  |-  ( z ( R  |`  A ) w  <->  <. z ,  w >.  e.  ( R  |`  A ) )
6 ancom 266 . . . 4  |-  ( ( z R w  /\  z  e.  A )  <->  ( z  e.  A  /\  z R w ) )
74, 5, 63bitr3i 210 . . 3  |-  ( <.
z ,  w >.  e.  ( R  |`  A )  <-> 
( z  e.  A  /\  z R w ) )
8 vex 2802 . . . 4  |-  z  e. 
_V
9 eleq1 2292 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
10 breq1 4086 . . . . 5  |-  ( x  =  z  ->  (
x R y  <->  z R
y ) )
119, 10anbi12d 473 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  x R y )  <-> 
( z  e.  A  /\  z R y ) ) )
12 breq2 4087 . . . . 5  |-  ( y  =  w  ->  (
z R y  <->  z R w ) )
1312anbi2d 464 . . . 4  |-  ( y  =  w  ->  (
( z  e.  A  /\  z R y )  <-> 
( z  e.  A  /\  z R w ) ) )
148, 3, 11, 13opelopab 4360 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( x  e.  A  /\  x R y ) }  <-> 
( z  e.  A  /\  z R w ) )
157, 14bitr4i 187 . 2  |-  ( <.
z ,  w >.  e.  ( R  |`  A )  <->  <. z ,  w >.  e. 
{ <. x ,  y
>.  |  ( x  e.  A  /\  x R y ) } )
161, 2, 15eqrelriiv 4813 1  |-  ( R  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   <.cop 3669   class class class wbr 4083   {copab 4144    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-res 4731
This theorem is referenced by:  shftidt2  11343
  Copyright terms: Public domain W3C validator