ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt Unicode version

Theorem resmpt 4862
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.)
Assertion
Ref Expression
resmpt  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resopab2 4861 . 2  |-  ( B 
C_  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
2 df-mpt 3986 . . 3  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
32reseq1i 4810 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )
4 df-mpt 3986 . 2  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
51, 3, 43eqtr4g 2195 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    C_ wss 3066   {copab 3983    |-> cmpt 3984    |` cres 4536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-opab 3985  df-mpt 3986  df-xp 4540  df-rel 4541  df-res 4546
This theorem is referenced by:  resmpt3  4863  resmptf  4864  resmptd  4865  f1stres  6050  f2ndres  6051  tposss  6136  dftpos2  6151  dftpos4  6153  djuf1olemr  6932  fisumss  11154  isumclim3  11185  expcnv  11266  tgrest  12327  cnmptid  12439  dvidlemap  12818  dvcnp2cntop  12821  dvmulxxbr  12824  dvcoapbr  12829  dvrecap  12835
  Copyright terms: Public domain W3C validator