ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt Unicode version

Theorem resmpt 4995
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.)
Assertion
Ref Expression
resmpt  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resopab2 4994 . 2  |-  ( B 
C_  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
2 df-mpt 4097 . . 3  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
32reseq1i 4943 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )
4 df-mpt 4097 . 2  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
51, 3, 43eqtr4g 2254 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   {copab 4094    |-> cmpt 4095    |` cres 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-res 4676
This theorem is referenced by:  resmpt3  4996  resmptf  4997  resmptd  4998  f1stres  6226  f2ndres  6227  tposss  6313  dftpos2  6328  dftpos4  6330  djuf1olemr  7129  fisumss  11574  isumclim3  11605  expcnv  11686  fprodssdc  11772  conjsubg  13483  gsumfzfsumlemm  14219  tgrest  14489  cnmptid  14601  hovercncf  14966  dvidlemap  15011  dvidrelem  15012  dvidsslem  15013  dvcnp2cntop  15019  dvmulxxbr  15022  dvcoapbr  15027  dvrecap  15033
  Copyright terms: Public domain W3C validator