ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt Unicode version

Theorem resmpt 5006
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.)
Assertion
Ref Expression
resmpt  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resopab2 5005 . 2  |-  ( B 
C_  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
2 df-mpt 4106 . . 3  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
32reseq1i 4954 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )
4 df-mpt 4106 . 2  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
51, 3, 43eqtr4g 2262 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    C_ wss 3165   {copab 4103    |-> cmpt 4104    |` cres 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-mpt 4106  df-xp 4680  df-rel 4681  df-res 4686
This theorem is referenced by:  resmpt3  5007  resmptf  5008  resmptd  5009  f1stres  6244  f2ndres  6245  tposss  6331  dftpos2  6346  dftpos4  6348  djuf1olemr  7155  fisumss  11674  isumclim3  11705  expcnv  11786  fprodssdc  11872  conjsubg  13584  gsumfzfsumlemm  14320  tgrest  14612  cnmptid  14724  hovercncf  15089  dvidlemap  15134  dvidrelem  15135  dvidsslem  15136  dvcnp2cntop  15142  dvmulxxbr  15145  dvcoapbr  15150  dvrecap  15156
  Copyright terms: Public domain W3C validator