ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt Unicode version

Theorem resmpt 4760
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.)
Assertion
Ref Expression
resmpt  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resopab2 4759 . 2  |-  ( B 
C_  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
2 df-mpt 3901 . . 3  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
32reseq1i 4709 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  |`  B )
4 df-mpt 3901 . 2  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
51, 3, 43eqtr4g 2145 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438    C_ wss 2999   {copab 3898    |-> cmpt 3899    |` cres 4440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-opab 3900  df-mpt 3901  df-xp 4444  df-rel 4445  df-res 4450
This theorem is referenced by:  resmpt3  4761  resmptf  4762  resmptd  4763  f1stres  5930  f2ndres  5931  tposss  6011  dftpos2  6026  dftpos4  6028  djuf1olemr  6746  fisumss  10784  isumclim3  10817  expcnv  10898
  Copyright terms: Public domain W3C validator