ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1res Unicode version

Theorem cnmpt1res 12454
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2  |-  K  =  ( Jt  Y )
cnmpt1res.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt1res.5  |-  ( ph  ->  Y  C_  X )
cnmpt1res.6  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )
Assertion
Ref Expression
cnmpt1res  |-  ( ph  ->  ( x  e.  Y  |->  A )  e.  ( K  Cn  L ) )
Distinct variable groups:    x, X    x, Y
Allowed substitution hints:    ph( x)    A( x)    J( x)    K( x)    L( x)

Proof of Theorem cnmpt1res
StepHypRef Expression
1 cnmpt1res.5 . . 3  |-  ( ph  ->  Y  C_  X )
21resmptd 4865 . 2  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  Y )  =  ( x  e.  Y  |->  A ) )
3 cnmpt1res.6 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )
4 cnmpt1res.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
5 toponuni 12171 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
64, 5syl 14 . . . . 5  |-  ( ph  ->  X  =  U. J
)
71, 6sseqtrd 3130 . . . 4  |-  ( ph  ->  Y  C_  U. J )
8 eqid 2137 . . . . 5  |-  U. J  =  U. J
98cnrest 12393 . . . 4  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  L )  /\  Y  C_  U. J
)  ->  ( (
x  e.  X  |->  A )  |`  Y )  e.  ( ( Jt  Y )  Cn  L ) )
103, 7, 9syl2anc 408 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  Y )  e.  ( ( Jt  Y )  Cn  L
) )
11 cnmpt1res.2 . . . 4  |-  K  =  ( Jt  Y )
1211oveq1i 5777 . . 3  |-  ( K  Cn  L )  =  ( ( Jt  Y )  Cn  L )
1310, 12eleqtrrdi 2231 . 2  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  Y )  e.  ( K  Cn  L ) )
142, 13eqeltrrd 2215 1  |-  ( ph  ->  ( x  e.  Y  |->  A )  e.  ( K  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480    C_ wss 3066   U.cuni 3731    |-> cmpt 3984    |` cres 4536   ` cfv 5118  (class class class)co 5767   ↾t crest 12109  TopOnctopon 12166    Cn ccn 12343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-rest 12111  df-topgen 12130  df-top 12154  df-topon 12167  df-bases 12199  df-cn 12346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator