ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressxr GIF version

Theorem ressxr 8131
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ressxr ℝ ⊆ ℝ*

Proof of Theorem ressxr
StepHypRef Expression
1 ssun1 3340 . 2 ℝ ⊆ (ℝ ∪ {+∞, -∞})
2 df-xr 8126 . 2 * = (ℝ ∪ {+∞, -∞})
31, 2sseqtrri 3232 1 ℝ ⊆ ℝ*
Colors of variables: wff set class
Syntax hints:  cun 3168  wss 3170  {cpr 3638  cr 7939  +∞cpnf 8119  -∞cmnf 8120  *cxr 8121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-xr 8126
This theorem is referenced by:  rexpssxrxp  8132  rexr  8133  0xr  8134  rexrd  8137  ltrelxr  8148  iooval2  10052  fzval2  10148  seq3coll  11004  summodclem2a  11762  prodmodclem2a  11957  ismet2  14896  qtopbas  15064  tgqioo  15097
  Copyright terms: Public domain W3C validator