ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressxr GIF version

Theorem ressxr 8089
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ressxr ℝ ⊆ ℝ*

Proof of Theorem ressxr
StepHypRef Expression
1 ssun1 3327 . 2 ℝ ⊆ (ℝ ∪ {+∞, -∞})
2 df-xr 8084 . 2 * = (ℝ ∪ {+∞, -∞})
31, 2sseqtrri 3219 1 ℝ ⊆ ℝ*
Colors of variables: wff set class
Syntax hints:  cun 3155  wss 3157  {cpr 3624  cr 7897  +∞cpnf 8077  -∞cmnf 8078  *cxr 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-xr 8084
This theorem is referenced by:  rexpssxrxp  8090  rexr  8091  0xr  8092  rexrd  8095  ltrelxr  8106  iooval2  10009  fzval2  10105  seq3coll  10953  summodclem2a  11565  prodmodclem2a  11760  ismet2  14698  qtopbas  14866  tgqioo  14899
  Copyright terms: Public domain W3C validator