![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressxr | GIF version |
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ressxr | ⊢ ℝ ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3163 | . 2 ⊢ ℝ ⊆ (ℝ ∪ {+∞, -∞}) | |
2 | df-xr 7524 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
3 | 1, 2 | sseqtr4i 3059 | 1 ⊢ ℝ ⊆ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∪ cun 2997 ⊆ wss 2999 {cpr 3447 ℝcr 7347 +∞cpnf 7517 -∞cmnf 7518 ℝ*cxr 7519 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-xr 7524 |
This theorem is referenced by: rexpssxrxp 7530 rexr 7531 0xr 7532 rexrd 7535 ltrelxr 7545 iooval2 9331 fzval2 9425 iseqcoll 10243 isummolem2a 10767 |
Copyright terms: Public domain | W3C validator |