![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressxr | GIF version |
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ressxr | ⊢ ℝ ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3322 | . 2 ⊢ ℝ ⊆ (ℝ ∪ {+∞, -∞}) | |
2 | df-xr 8058 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
3 | 1, 2 | sseqtrri 3214 | 1 ⊢ ℝ ⊆ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3151 ⊆ wss 3153 {cpr 3619 ℝcr 7871 +∞cpnf 8051 -∞cmnf 8052 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-xr 8058 |
This theorem is referenced by: rexpssxrxp 8064 rexr 8065 0xr 8066 rexrd 8069 ltrelxr 8080 iooval2 9981 fzval2 10077 seq3coll 10913 summodclem2a 11524 prodmodclem2a 11719 ismet2 14522 qtopbas 14690 tgqioo 14715 |
Copyright terms: Public domain | W3C validator |