| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressxr | GIF version | ||
| Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ressxr | ⊢ ℝ ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3340 | . 2 ⊢ ℝ ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-xr 8126 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 3 | 1, 2 | sseqtrri 3232 | 1 ⊢ ℝ ⊆ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3168 ⊆ wss 3170 {cpr 3638 ℝcr 7939 +∞cpnf 8119 -∞cmnf 8120 ℝ*cxr 8121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-xr 8126 |
| This theorem is referenced by: rexpssxrxp 8132 rexr 8133 0xr 8134 rexrd 8137 ltrelxr 8148 iooval2 10052 fzval2 10148 seq3coll 11004 summodclem2a 11762 prodmodclem2a 11957 ismet2 14896 qtopbas 15064 tgqioo 15097 |
| Copyright terms: Public domain | W3C validator |