| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressxr | GIF version | ||
| Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ressxr | ⊢ ℝ ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3326 | . 2 ⊢ ℝ ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-xr 8065 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 3 | 1, 2 | sseqtrri 3218 | 1 ⊢ ℝ ⊆ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 {cpr 3623 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8065 |
| This theorem is referenced by: rexpssxrxp 8071 rexr 8072 0xr 8073 rexrd 8076 ltrelxr 8087 iooval2 9990 fzval2 10086 seq3coll 10934 summodclem2a 11546 prodmodclem2a 11741 ismet2 14590 qtopbas 14758 tgqioo 14791 |
| Copyright terms: Public domain | W3C validator |