ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressxr GIF version

Theorem ressxr 8065
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ressxr ℝ ⊆ ℝ*

Proof of Theorem ressxr
StepHypRef Expression
1 ssun1 3323 . 2 ℝ ⊆ (ℝ ∪ {+∞, -∞})
2 df-xr 8060 . 2 * = (ℝ ∪ {+∞, -∞})
31, 2sseqtrri 3215 1 ℝ ⊆ ℝ*
Colors of variables: wff set class
Syntax hints:  cun 3152  wss 3154  {cpr 3620  cr 7873  +∞cpnf 8053  -∞cmnf 8054  *cxr 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-xr 8060
This theorem is referenced by:  rexpssxrxp  8066  rexr  8067  0xr  8068  rexrd  8071  ltrelxr  8082  iooval2  9984  fzval2  10080  seq3coll  10916  summodclem2a  11527  prodmodclem2a  11722  ismet2  14533  qtopbas  14701  tgqioo  14734
  Copyright terms: Public domain W3C validator