| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressxr | GIF version | ||
| Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ressxr | ⊢ ℝ ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3367 | . 2 ⊢ ℝ ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-xr 8181 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 3 | 1, 2 | sseqtrri 3259 | 1 ⊢ ℝ ⊆ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3195 ⊆ wss 3197 {cpr 3667 ℝcr 7994 +∞cpnf 8174 -∞cmnf 8175 ℝ*cxr 8176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8181 |
| This theorem is referenced by: rexpssxrxp 8187 rexr 8188 0xr 8189 rexrd 8192 ltrelxr 8203 iooval2 10107 fzval2 10203 seq3coll 11059 summodclem2a 11887 prodmodclem2a 12082 ismet2 15022 qtopbas 15190 tgqioo 15223 |
| Copyright terms: Public domain | W3C validator |