![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressxr | GIF version |
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ressxr | ⊢ ℝ ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3323 | . 2 ⊢ ℝ ⊆ (ℝ ∪ {+∞, -∞}) | |
2 | df-xr 8060 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
3 | 1, 2 | sseqtrri 3215 | 1 ⊢ ℝ ⊆ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3152 ⊆ wss 3154 {cpr 3620 ℝcr 7873 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-xr 8060 |
This theorem is referenced by: rexpssxrxp 8066 rexr 8067 0xr 8068 rexrd 8071 ltrelxr 8082 iooval2 9984 fzval2 10080 seq3coll 10916 summodclem2a 11527 prodmodclem2a 11722 ismet2 14533 qtopbas 14701 tgqioo 14734 |
Copyright terms: Public domain | W3C validator |