ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressxr GIF version

Theorem ressxr 8186
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ressxr ℝ ⊆ ℝ*

Proof of Theorem ressxr
StepHypRef Expression
1 ssun1 3367 . 2 ℝ ⊆ (ℝ ∪ {+∞, -∞})
2 df-xr 8181 . 2 * = (ℝ ∪ {+∞, -∞})
31, 2sseqtrri 3259 1 ℝ ⊆ ℝ*
Colors of variables: wff set class
Syntax hints:  cun 3195  wss 3197  {cpr 3667  cr 7994  +∞cpnf 8174  -∞cmnf 8175  *cxr 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-xr 8181
This theorem is referenced by:  rexpssxrxp  8187  rexr  8188  0xr  8189  rexrd  8192  ltrelxr  8203  iooval2  10107  fzval2  10203  seq3coll  11059  summodclem2a  11887  prodmodclem2a  12082  ismet2  15022  qtopbas  15190  tgqioo  15223
  Copyright terms: Public domain W3C validator