ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbas Unicode version

Theorem qtopbas 12680
Description: The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
qtopbas  |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases

Proof of Theorem qtopbas
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 9415 . . 3  |-  QQ  C_  RR
2 ressxr 7802 . . 3  |-  RR  C_  RR*
31, 2sstri 3101 . 2  |-  QQ  C_  RR*
4 qre 9410 . . . 4  |-  ( x  e.  QQ  ->  x  e.  RR )
5 qre 9410 . . . 4  |-  ( y  e.  QQ  ->  y  e.  RR )
6 xrmaxrecl 11017 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  sup ( { x ,  y } ,  RR* ,  <  )  =  sup ( { x ,  y } ,  RR ,  <  ) )
74, 5, 6syl2an 287 . . 3  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  sup ( { x ,  y } ,  RR* ,  <  )  =  sup ( { x ,  y } ,  RR ,  <  ) )
8 simpr 109 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\  sup ( { x ,  y } ,  RR ,  <  )  =  x )  ->  sup ( { x ,  y } ,  RR ,  <  )  =  x )
9 simpll 518 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\  sup ( { x ,  y } ,  RR ,  <  )  =  x )  ->  x  e.  QQ )
108, 9eqeltrd 2214 . . . 4  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\  sup ( { x ,  y } ,  RR ,  <  )  =  x )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  QQ )
11 simpr 109 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\  sup ( { x ,  y } ,  RR ,  <  )  =  y )  ->  sup ( { x ,  y } ,  RR ,  <  )  =  y )
12 simplr 519 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\  sup ( { x ,  y } ,  RR ,  <  )  =  y )  -> 
y  e.  QQ )
1311, 12eqeltrd 2214 . . . 4  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\  sup ( { x ,  y } ,  RR ,  <  )  =  y )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  QQ )
14 qletric 10014 . . . . . 6  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  ( x  <_  y  \/  y  <_  x ) )
15 maxclpr 10987 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  e.  { x ,  y }  <->  ( x  <_  y  \/  y  <_  x ) ) )
164, 5, 15syl2an 287 . . . . . 6  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  e.  { x ,  y }  <->  ( x  <_  y  \/  y  <_  x ) ) )
1714, 16mpbird 166 . . . . 5  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  sup ( { x ,  y } ,  RR ,  <  )  e. 
{ x ,  y } )
18 elpri 3545 . . . . 5  |-  ( sup ( { x ,  y } ,  RR ,  <  )  e.  {
x ,  y }  ->  ( sup ( { x ,  y } ,  RR ,  <  )  =  x  \/ 
sup ( { x ,  y } ,  RR ,  <  )  =  y ) )
1917, 18syl 14 . . . 4  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  =  x  \/  sup ( { x ,  y } ,  RR ,  <  )  =  y ) )
2010, 13, 19mpjaodan 787 . . 3  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  QQ )
217, 20eqeltrd 2214 . 2  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  QQ )
22 xrminrecl 11035 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  -> inf ( { x ,  y } ,  RR* ,  <  )  = inf ( { x ,  y } ,  RR ,  <  ) )
234, 5, 22syl2an 287 . . 3  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  -> inf ( { x ,  y } ,  RR* ,  <  )  = inf ( { x ,  y } ,  RR ,  <  ) )
24 simpr 109 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\ inf ( { x ,  y } ,  RR ,  <  )  =  x )  -> inf ( { x ,  y } ,  RR ,  <  )  =  x )
25 simpll 518 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\ inf ( { x ,  y } ,  RR ,  <  )  =  x )  ->  x  e.  QQ )
2624, 25eqeltrd 2214 . . . 4  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\ inf ( { x ,  y } ,  RR ,  <  )  =  x )  -> inf ( { x ,  y } ,  RR ,  <  )  e.  QQ )
27 simpr 109 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\ inf ( { x ,  y } ,  RR ,  <  )  =  y )  -> inf ( { x ,  y } ,  RR ,  <  )  =  y )
28 simplr 519 . . . . 5  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\ inf ( { x ,  y } ,  RR ,  <  )  =  y )  ->  y  e.  QQ )
2927, 28eqeltrd 2214 . . . 4  |-  ( ( ( x  e.  QQ  /\  y  e.  QQ )  /\ inf ( { x ,  y } ,  RR ,  <  )  =  y )  -> inf ( { x ,  y } ,  RR ,  <  )  e.  QQ )
30 minclpr 11001 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  (inf ( { x ,  y } ,  RR ,  <  )  e. 
{ x ,  y }  <->  ( x  <_ 
y  \/  y  <_  x ) ) )
314, 5, 30syl2an 287 . . . . . 6  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  (inf ( { x ,  y } ,  RR ,  <  )  e. 
{ x ,  y }  <->  ( x  <_ 
y  \/  y  <_  x ) ) )
3214, 31mpbird 166 . . . . 5  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  -> inf ( { x ,  y } ,  RR ,  <  )  e.  {
x ,  y } )
33 elpri 3545 . . . . 5  |-  (inf ( { x ,  y } ,  RR ,  <  )  e.  { x ,  y }  ->  (inf ( { x ,  y } ,  RR ,  <  )  =  x  \/ inf ( { x ,  y } ,  RR ,  <  )  =  y ) )
3432, 33syl 14 . . . 4  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  (inf ( { x ,  y } ,  RR ,  <  )  =  x  \/ inf ( { x ,  y } ,  RR ,  <  )  =  y ) )
3526, 29, 34mpjaodan 787 . . 3  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  -> inf ( { x ,  y } ,  RR ,  <  )  e.  QQ )
3623, 35eqeltrd 2214 . 2  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  QQ )
373, 21, 36qtopbasss 12679 1  |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   {cpr 3523   class class class wbr 3924    X. cxp 4532   "cima 4537   supcsup 6862  infcinf 6863   RRcr 7612   RR*cxr 7792    < clt 7793    <_ cle 7794   QQcq 9404   (,)cioo 9664   TopBasesctb 12198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-ioo 9668  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-bases 12199
This theorem is referenced by:  tgqioo  12705
  Copyright terms: Public domain W3C validator