ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvv Unicode version

Theorem rexlimdvv 2629
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
rexlimdvv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimdvv  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
Distinct variable groups:    x, y, ph    ch, x, y    y, A
Allowed substitution hints:    ps( x, y)    A( x)    B( x, y)

Proof of Theorem rexlimdvv
StepHypRef Expression
1 rexlimdvv.1 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )
21expdimp 259 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
y  e.  B  -> 
( ps  ->  ch ) ) )
32rexlimdv 2621 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  B  ps  ->  ch ) )
43rexlimdva 2622 1  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   E.wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-ral 2488  df-rex 2489
This theorem is referenced by:  rexlimdvva  2630  f1oiso2  5895  rex2dom  6909  xpdom2  6925  genpcdl  7631  genpcuu  7632  distrlem1prl  7694  distrlem1pru  7695  distrlem5prl  7698  distrlem5pru  7699  recexprlemss1l  7747  recexprlemss1u  7748  qaddcl  9755  qmulcl  9757  summodc  11665  dvdsgcd  12304  gcddiv  12311  pceu  12589  pcqcl  12600  txcnp  14714  blssps  14870  blss  14871  tgqioo  14998
  Copyright terms: Public domain W3C validator