ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvv Unicode version

Theorem rexlimdvv 2630
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
rexlimdvv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimdvv  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
Distinct variable groups:    x, y, ph    ch, x, y    y, A
Allowed substitution hints:    ps( x, y)    A( x)    B( x, y)

Proof of Theorem rexlimdvv
StepHypRef Expression
1 rexlimdvv.1 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )
21expdimp 259 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
y  e.  B  -> 
( ps  ->  ch ) ) )
32rexlimdv 2622 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  B  ps  ->  ch ) )
43rexlimdva 2623 1  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489  df-rex 2490
This theorem is referenced by:  rexlimdvva  2631  f1oiso2  5896  rex2dom  6910  xpdom2  6926  genpcdl  7632  genpcuu  7633  distrlem1prl  7695  distrlem1pru  7696  distrlem5prl  7699  distrlem5pru  7700  recexprlemss1l  7748  recexprlemss1u  7749  qaddcl  9756  qmulcl  9758  summodc  11694  dvdsgcd  12333  gcddiv  12340  pceu  12618  pcqcl  12629  txcnp  14743  blssps  14899  blss  14900  tgqioo  15027
  Copyright terms: Public domain W3C validator