| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| rexlimdvv.1 |
|
| Ref | Expression |
|---|---|
| rexlimdvv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvv.1 |
. . . 4
| |
| 2 | 1 | expdimp 259 |
. . 3
|
| 3 | 2 | rexlimdv 2647 |
. 2
|
| 4 | 3 | rexlimdva 2648 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexlimdvva 2656 f1oiso2 5950 rex2dom 6969 xpdom2 6986 genpcdl 7702 genpcuu 7703 distrlem1prl 7765 distrlem1pru 7766 distrlem5prl 7769 distrlem5pru 7770 recexprlemss1l 7818 recexprlemss1u 7819 qaddcl 9826 qmulcl 9828 summodc 11889 dvdsgcd 12528 gcddiv 12535 pceu 12813 pcqcl 12824 txcnp 14939 blssps 15095 blss 15096 tgqioo 15223 upgredg2vtx 15940 |
| Copyright terms: Public domain | W3C validator |