ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvv Unicode version

Theorem rexlimdvv 2589
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
rexlimdvv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimdvv  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
Distinct variable groups:    x, y, ph    ch, x, y    y, A
Allowed substitution hints:    ps( x, y)    A( x)    B( x, y)

Proof of Theorem rexlimdvv
StepHypRef Expression
1 rexlimdvv.1 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )
21expdimp 257 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
y  e.  B  -> 
( ps  ->  ch ) ) )
32rexlimdv 2581 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  B  ps  ->  ch ) )
43rexlimdva 2582 1  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   E.wrex 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2448  df-rex 2449
This theorem is referenced by:  rexlimdvva  2590  f1oiso2  5794  xpdom2  6793  genpcdl  7456  genpcuu  7457  distrlem1prl  7519  distrlem1pru  7520  distrlem5prl  7523  distrlem5pru  7524  recexprlemss1l  7572  recexprlemss1u  7573  qaddcl  9569  qmulcl  9571  summodc  11320  dvdsgcd  11941  gcddiv  11948  pceu  12223  pcqcl  12234  txcnp  12871  blssps  13027  blss  13028  tgqioo  13147
  Copyright terms: Public domain W3C validator