| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| rexlimdvv.1 |
|
| Ref | Expression |
|---|---|
| rexlimdvv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvv.1 |
. . . 4
| |
| 2 | 1 | expdimp 259 |
. . 3
|
| 3 | 2 | rexlimdv 2623 |
. 2
|
| 4 | 3 | rexlimdva 2624 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: rexlimdvva 2632 f1oiso2 5914 rex2dom 6929 xpdom2 6946 genpcdl 7662 genpcuu 7663 distrlem1prl 7725 distrlem1pru 7726 distrlem5prl 7729 distrlem5pru 7730 recexprlemss1l 7778 recexprlemss1u 7779 qaddcl 9786 qmulcl 9788 summodc 11779 dvdsgcd 12418 gcddiv 12425 pceu 12703 pcqcl 12714 txcnp 14828 blssps 14984 blss 14985 tgqioo 15112 upgredg2vtx 15822 |
| Copyright terms: Public domain | W3C validator |