ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex Unicode version

Theorem axprecex 7821
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7863.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem axprecex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7769 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2450 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 183 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 breq2 3986 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  A ) )
5 oveq1 5849 . . . . . . 7  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2174 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76anbi2d 460 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
87rexbidv 2467 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
94, 8imbi12d 233 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) )  <->  ( 0 
<RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) ) )
10 df-0 7760 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1110breq1i 3989 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
12 ltresr 7780 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1311, 12bitri 183 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
14 recexgt0sr 7714 . . . . 5  |-  ( 0R 
<R  y  ->  E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z )  =  1R ) )
15 opelreal 7768 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1615anbi1i 454 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
1710breq1i 3989 . . . . . . . . . . . . 13  |-  ( 0 
<RR  <. z ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. z ,  0R >. )
18 ltresr 7780 . . . . . . . . . . . . 13  |-  ( <. 0R ,  0R >.  <RR  <. z ,  0R >.  <->  0R  <R  z )
1917, 18bitri 183 . . . . . . . . . . . 12  |-  ( 0 
<RR  <. z ,  0R >.  <-> 
0R  <R  z )
2019a1i 9 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( 0  <RR  <. z ,  0R >.  <->  0R  <R  z ) )
21 mulresr 7779 . . . . . . . . . . . . 13  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2221eqeq1d 2174 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
23 df-1 7761 . . . . . . . . . . . . . 14  |-  1  =  <. 1R ,  0R >.
2423eqeq2i 2176 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
25 eqid 2165 . . . . . . . . . . . . . 14  |-  0R  =  0R
26 1sr 7692 . . . . . . . . . . . . . . 15  |-  1R  e.  R.
27 0r 7691 . . . . . . . . . . . . . . 15  |-  0R  e.  R.
28 opthg2 4217 . . . . . . . . . . . . . . 15  |-  ( ( 1R  e.  R.  /\  0R  e.  R. )  -> 
( <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >.  <-> 
( ( y  .R  z )  =  1R  /\  0R  =  0R ) ) )
2926, 27, 28mp2an 423 . . . . . . . . . . . . . 14  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
( y  .R  z
)  =  1R  /\  0R  =  0R )
)
3025, 29mpbiran2 931 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
3124, 30bitri 183 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
3222, 31bitrdi 195 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
3320, 32anbi12d 465 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) )
3433pm5.32da 448 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )  <-> 
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) ) )
3516, 34syl5bb 191 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  (
0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0R 
<R  z  /\  (
y  .R  z )  =  1R ) ) ) )
36 breq2 3986 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( 0  <RR  x  <->  0  <RR  <. z ,  0R >. ) )
37 oveq2 5850 . . . . . . . . . . 11  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3837eqeq1d 2174 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3936, 38anbi12d 465 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( 0 
<RR  x  /\  ( <.
y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
4039rspcev 2830 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) )
4135, 40syl6bir 163 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
)  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4241expd 256 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) ) )
4342rexlimdv 2582 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
4414, 43syl5 32 . . . 4  |-  ( y  e.  R.  ->  ( 0R  <R  y  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4513, 44syl5bi 151 . . 3  |-  ( y  e.  R.  ->  (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
463, 9, 45gencl 2758 . 2  |-  ( A  e.  RR  ->  (
0  <RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
4746imp 123 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   <.cop 3579   class class class wbr 3982  (class class class)co 5842   R.cnr 7238   0Rc0r 7239   1Rc1r 7240    .R cmr 7243    <R cltr 7244   RRcr 7752   0cc0 7753   1c1 7754    <RR cltrr 7757    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674  df-c 7759  df-0 7760  df-1 7761  df-r 7763  df-mul 7765  df-lt 7766
This theorem is referenced by:  rereceu  7830  recriota  7831
  Copyright terms: Public domain W3C validator