ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex Unicode version

Theorem axprecex 7394
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7434.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem axprecex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7345 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2365 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 182 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 breq2 3841 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  A ) )
5 oveq1 5641 . . . . . . 7  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2096 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76anbi2d 452 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
87rexbidv 2381 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
94, 8imbi12d 232 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) )  <->  ( 0 
<RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) ) )
10 df-0 7336 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1110breq1i 3844 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
12 ltresr 7355 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1311, 12bitri 182 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
14 recexgt0sr 7298 . . . . 5  |-  ( 0R 
<R  y  ->  E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z )  =  1R ) )
15 opelreal 7344 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1615anbi1i 446 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
1710breq1i 3844 . . . . . . . . . . . . 13  |-  ( 0 
<RR  <. z ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. z ,  0R >. )
18 ltresr 7355 . . . . . . . . . . . . 13  |-  ( <. 0R ,  0R >.  <RR  <. z ,  0R >.  <->  0R  <R  z )
1917, 18bitri 182 . . . . . . . . . . . 12  |-  ( 0 
<RR  <. z ,  0R >.  <-> 
0R  <R  z )
2019a1i 9 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( 0  <RR  <. z ,  0R >.  <->  0R  <R  z ) )
21 mulresr 7354 . . . . . . . . . . . . 13  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2221eqeq1d 2096 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
23 df-1 7337 . . . . . . . . . . . . . 14  |-  1  =  <. 1R ,  0R >.
2423eqeq2i 2098 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
25 eqid 2088 . . . . . . . . . . . . . 14  |-  0R  =  0R
26 1sr 7276 . . . . . . . . . . . . . . 15  |-  1R  e.  R.
27 0r 7275 . . . . . . . . . . . . . . 15  |-  0R  e.  R.
28 opthg2 4057 . . . . . . . . . . . . . . 15  |-  ( ( 1R  e.  R.  /\  0R  e.  R. )  -> 
( <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >.  <-> 
( ( y  .R  z )  =  1R  /\  0R  =  0R ) ) )
2926, 27, 28mp2an 417 . . . . . . . . . . . . . 14  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
( y  .R  z
)  =  1R  /\  0R  =  0R )
)
3025, 29mpbiran2 887 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
3124, 30bitri 182 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
3222, 31syl6bb 194 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
3320, 32anbi12d 457 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) )
3433pm5.32da 440 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )  <-> 
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) ) )
3516, 34syl5bb 190 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  (
0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0R 
<R  z  /\  (
y  .R  z )  =  1R ) ) ) )
36 breq2 3841 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( 0  <RR  x  <->  0  <RR  <. z ,  0R >. ) )
37 oveq2 5642 . . . . . . . . . . 11  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3837eqeq1d 2096 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3936, 38anbi12d 457 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( 0 
<RR  x  /\  ( <.
y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
4039rspcev 2722 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) )
4135, 40syl6bir 162 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
)  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4241expd 254 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) ) )
4342rexlimdv 2488 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
4414, 43syl5 32 . . . 4  |-  ( y  e.  R.  ->  ( 0R  <R  y  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4513, 44syl5bi 150 . . 3  |-  ( y  e.  R.  ->  (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
463, 9, 45gencl 2651 . 2  |-  ( A  e.  RR  ->  (
0  <RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
4746imp 122 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   E.wrex 2360   <.cop 3444   class class class wbr 3837  (class class class)co 5634   R.cnr 6835   0Rc0r 6836   1Rc1r 6837    .R cmr 6840    <R cltr 6841   RRcr 7328   0cc0 7329   1c1 7330    <RR cltrr 7333    x. cmul 7334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-2o 6164  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-pli 6843  df-mi 6844  df-lti 6845  df-plpq 6882  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-plqqs 6887  df-mqqs 6888  df-1nqqs 6889  df-rq 6890  df-ltnqqs 6891  df-enq0 6962  df-nq0 6963  df-0nq0 6964  df-plq0 6965  df-mq0 6966  df-inp 7004  df-i1p 7005  df-iplp 7006  df-imp 7007  df-iltp 7008  df-enr 7251  df-nr 7252  df-plr 7253  df-mr 7254  df-ltr 7255  df-0r 7256  df-1r 7257  df-m1r 7258  df-c 7335  df-0 7336  df-1 7337  df-r 7339  df-mul 7341  df-lt 7342
This theorem is referenced by:  rereceu  7403  recriota  7404
  Copyright terms: Public domain W3C validator