| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axprecex | Unicode version | ||
| Description: Existence of positive
reciprocal of positive real number. Axiom for
real and complex numbers, derived from set theory. This
construction-dependent theorem should not be referenced directly;
instead, use ax-precex 8017.
In treatments which assume excluded middle, the |
| Ref | Expression |
|---|---|
| axprecex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7923 |
. . . 4
| |
| 2 | df-rex 2489 |
. . . 4
| |
| 3 | 1, 2 | bitri 184 |
. . 3
|
| 4 | breq2 4047 |
. . . 4
| |
| 5 | oveq1 5941 |
. . . . . . 7
| |
| 6 | 5 | eqeq1d 2213 |
. . . . . 6
|
| 7 | 6 | anbi2d 464 |
. . . . 5
|
| 8 | 7 | rexbidv 2506 |
. . . 4
|
| 9 | 4, 8 | imbi12d 234 |
. . 3
|
| 10 | df-0 7914 |
. . . . . 6
| |
| 11 | 10 | breq1i 4050 |
. . . . 5
|
| 12 | ltresr 7934 |
. . . . 5
| |
| 13 | 11, 12 | bitri 184 |
. . . 4
|
| 14 | recexgt0sr 7868 |
. . . . 5
| |
| 15 | opelreal 7922 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi1i 458 |
. . . . . . . . 9
|
| 17 | 10 | breq1i 4050 |
. . . . . . . . . . . . 13
|
| 18 | ltresr 7934 |
. . . . . . . . . . . . 13
| |
| 19 | 17, 18 | bitri 184 |
. . . . . . . . . . . 12
|
| 20 | 19 | a1i 9 |
. . . . . . . . . . 11
|
| 21 | mulresr 7933 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eqeq1d 2213 |
. . . . . . . . . . . 12
|
| 23 | df-1 7915 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | eqeq2i 2215 |
. . . . . . . . . . . . 13
|
| 25 | eqid 2204 |
. . . . . . . . . . . . . 14
| |
| 26 | 1sr 7846 |
. . . . . . . . . . . . . . 15
| |
| 27 | 0r 7845 |
. . . . . . . . . . . . . . 15
| |
| 28 | opthg2 4282 |
. . . . . . . . . . . . . . 15
| |
| 29 | 26, 27, 28 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 30 | 25, 29 | mpbiran2 943 |
. . . . . . . . . . . . 13
|
| 31 | 24, 30 | bitri 184 |
. . . . . . . . . . . 12
|
| 32 | 22, 31 | bitrdi 196 |
. . . . . . . . . . 11
|
| 33 | 20, 32 | anbi12d 473 |
. . . . . . . . . 10
|
| 34 | 33 | pm5.32da 452 |
. . . . . . . . 9
|
| 35 | 16, 34 | bitrid 192 |
. . . . . . . 8
|
| 36 | breq2 4047 |
. . . . . . . . . 10
| |
| 37 | oveq2 5942 |
. . . . . . . . . . 11
| |
| 38 | 37 | eqeq1d 2213 |
. . . . . . . . . 10
|
| 39 | 36, 38 | anbi12d 473 |
. . . . . . . . 9
|
| 40 | 39 | rspcev 2876 |
. . . . . . . 8
|
| 41 | 35, 40 | biimtrrdi 164 |
. . . . . . 7
|
| 42 | 41 | expd 258 |
. . . . . 6
|
| 43 | 42 | rexlimdv 2621 |
. . . . 5
|
| 44 | 14, 43 | syl5 32 |
. . . 4
|
| 45 | 13, 44 | biimtrid 152 |
. . 3
|
| 46 | 3, 9, 45 | gencl 2803 |
. 2
|
| 47 | 46 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4334 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-1o 6492 df-2o 6493 df-oadd 6496 df-omul 6497 df-er 6610 df-ec 6612 df-qs 6616 df-ni 7399 df-pli 7400 df-mi 7401 df-lti 7402 df-plpq 7439 df-mpq 7440 df-enq 7442 df-nqqs 7443 df-plqqs 7444 df-mqqs 7445 df-1nqqs 7446 df-rq 7447 df-ltnqqs 7448 df-enq0 7519 df-nq0 7520 df-0nq0 7521 df-plq0 7522 df-mq0 7523 df-inp 7561 df-i1p 7562 df-iplp 7563 df-imp 7564 df-iltp 7565 df-enr 7821 df-nr 7822 df-plr 7823 df-mr 7824 df-ltr 7825 df-0r 7826 df-1r 7827 df-m1r 7828 df-c 7913 df-0 7914 df-1 7915 df-r 7917 df-mul 7919 df-lt 7920 |
| This theorem is referenced by: rereceu 7984 recriota 7985 |
| Copyright terms: Public domain | W3C validator |