ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex Unicode version

Theorem axprecex 7783
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7825.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem axprecex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7731 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2441 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 183 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 breq2 3969 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  A ) )
5 oveq1 5825 . . . . . . 7  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2166 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76anbi2d 460 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
87rexbidv 2458 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
94, 8imbi12d 233 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) )  <->  ( 0 
<RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) ) )
10 df-0 7722 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1110breq1i 3972 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
12 ltresr 7742 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1311, 12bitri 183 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
14 recexgt0sr 7676 . . . . 5  |-  ( 0R 
<R  y  ->  E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z )  =  1R ) )
15 opelreal 7730 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1615anbi1i 454 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
1710breq1i 3972 . . . . . . . . . . . . 13  |-  ( 0 
<RR  <. z ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. z ,  0R >. )
18 ltresr 7742 . . . . . . . . . . . . 13  |-  ( <. 0R ,  0R >.  <RR  <. z ,  0R >.  <->  0R  <R  z )
1917, 18bitri 183 . . . . . . . . . . . 12  |-  ( 0 
<RR  <. z ,  0R >.  <-> 
0R  <R  z )
2019a1i 9 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( 0  <RR  <. z ,  0R >.  <->  0R  <R  z ) )
21 mulresr 7741 . . . . . . . . . . . . 13  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2221eqeq1d 2166 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
23 df-1 7723 . . . . . . . . . . . . . 14  |-  1  =  <. 1R ,  0R >.
2423eqeq2i 2168 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
25 eqid 2157 . . . . . . . . . . . . . 14  |-  0R  =  0R
26 1sr 7654 . . . . . . . . . . . . . . 15  |-  1R  e.  R.
27 0r 7653 . . . . . . . . . . . . . . 15  |-  0R  e.  R.
28 opthg2 4198 . . . . . . . . . . . . . . 15  |-  ( ( 1R  e.  R.  /\  0R  e.  R. )  -> 
( <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >.  <-> 
( ( y  .R  z )  =  1R  /\  0R  =  0R ) ) )
2926, 27, 28mp2an 423 . . . . . . . . . . . . . 14  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
( y  .R  z
)  =  1R  /\  0R  =  0R )
)
3025, 29mpbiran2 926 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
3124, 30bitri 183 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
3222, 31bitrdi 195 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
3320, 32anbi12d 465 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) )
3433pm5.32da 448 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )  <-> 
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) ) )
3516, 34syl5bb 191 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  (
0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0R 
<R  z  /\  (
y  .R  z )  =  1R ) ) ) )
36 breq2 3969 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( 0  <RR  x  <->  0  <RR  <. z ,  0R >. ) )
37 oveq2 5826 . . . . . . . . . . 11  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3837eqeq1d 2166 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3936, 38anbi12d 465 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( 0 
<RR  x  /\  ( <.
y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
4039rspcev 2816 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) )
4135, 40syl6bir 163 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
)  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4241expd 256 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) ) )
4342rexlimdv 2573 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
4414, 43syl5 32 . . . 4  |-  ( y  e.  R.  ->  ( 0R  <R  y  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4513, 44syl5bi 151 . . 3  |-  ( y  e.  R.  ->  (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
463, 9, 45gencl 2744 . 2  |-  ( A  e.  RR  ->  (
0  <RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
4746imp 123 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   E.wrex 2436   <.cop 3563   class class class wbr 3965  (class class class)co 5818   R.cnr 7200   0Rc0r 7201   1Rc1r 7202    .R cmr 7205    <R cltr 7206   RRcr 7714   0cc0 7715   1c1 7716    <RR cltrr 7719    x. cmul 7720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4248  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-1o 6357  df-2o 6358  df-oadd 6361  df-omul 6362  df-er 6473  df-ec 6475  df-qs 6479  df-ni 7207  df-pli 7208  df-mi 7209  df-lti 7210  df-plpq 7247  df-mpq 7248  df-enq 7250  df-nqqs 7251  df-plqqs 7252  df-mqqs 7253  df-1nqqs 7254  df-rq 7255  df-ltnqqs 7256  df-enq0 7327  df-nq0 7328  df-0nq0 7329  df-plq0 7330  df-mq0 7331  df-inp 7369  df-i1p 7370  df-iplp 7371  df-imp 7372  df-iltp 7373  df-enr 7629  df-nr 7630  df-plr 7631  df-mr 7632  df-ltr 7633  df-0r 7634  df-1r 7635  df-m1r 7636  df-c 7721  df-0 7722  df-1 7723  df-r 7725  df-mul 7727  df-lt 7728
This theorem is referenced by:  rereceu  7792  recriota  7793
  Copyright terms: Public domain W3C validator