ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex Unicode version

Theorem axprecex 7879
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7921.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem axprecex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7827 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2461 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 184 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 breq2 4008 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  A ) )
5 oveq1 5882 . . . . . . 7  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2186 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76anbi2d 464 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
87rexbidv 2478 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
94, 8imbi12d 234 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) )  <->  ( 0 
<RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) ) )
10 df-0 7818 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1110breq1i 4011 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
12 ltresr 7838 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1311, 12bitri 184 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
14 recexgt0sr 7772 . . . . 5  |-  ( 0R 
<R  y  ->  E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z )  =  1R ) )
15 opelreal 7826 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1615anbi1i 458 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
1710breq1i 4011 . . . . . . . . . . . . 13  |-  ( 0 
<RR  <. z ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. z ,  0R >. )
18 ltresr 7838 . . . . . . . . . . . . 13  |-  ( <. 0R ,  0R >.  <RR  <. z ,  0R >.  <->  0R  <R  z )
1917, 18bitri 184 . . . . . . . . . . . 12  |-  ( 0 
<RR  <. z ,  0R >.  <-> 
0R  <R  z )
2019a1i 9 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( 0  <RR  <. z ,  0R >.  <->  0R  <R  z ) )
21 mulresr 7837 . . . . . . . . . . . . 13  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2221eqeq1d 2186 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
23 df-1 7819 . . . . . . . . . . . . . 14  |-  1  =  <. 1R ,  0R >.
2423eqeq2i 2188 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
25 eqid 2177 . . . . . . . . . . . . . 14  |-  0R  =  0R
26 1sr 7750 . . . . . . . . . . . . . . 15  |-  1R  e.  R.
27 0r 7749 . . . . . . . . . . . . . . 15  |-  0R  e.  R.
28 opthg2 4240 . . . . . . . . . . . . . . 15  |-  ( ( 1R  e.  R.  /\  0R  e.  R. )  -> 
( <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >.  <-> 
( ( y  .R  z )  =  1R  /\  0R  =  0R ) ) )
2926, 27, 28mp2an 426 . . . . . . . . . . . . . 14  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
( y  .R  z
)  =  1R  /\  0R  =  0R )
)
3025, 29mpbiran2 941 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
3124, 30bitri 184 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
3222, 31bitrdi 196 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
3320, 32anbi12d 473 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) )
3433pm5.32da 452 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )  <-> 
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) ) )
3516, 34bitrid 192 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  (
0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0R 
<R  z  /\  (
y  .R  z )  =  1R ) ) ) )
36 breq2 4008 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( 0  <RR  x  <->  0  <RR  <. z ,  0R >. ) )
37 oveq2 5883 . . . . . . . . . . 11  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3837eqeq1d 2186 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3936, 38anbi12d 473 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( 0 
<RR  x  /\  ( <.
y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
4039rspcev 2842 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) )
4135, 40syl6bir 164 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
)  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4241expd 258 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) ) )
4342rexlimdv 2593 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
4414, 43syl5 32 . . . 4  |-  ( y  e.  R.  ->  ( 0R  <R  y  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4513, 44biimtrid 152 . . 3  |-  ( y  e.  R.  ->  (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
463, 9, 45gencl 2770 . 2  |-  ( A  e.  RR  ->  (
0  <RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
4746imp 124 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   <.cop 3596   class class class wbr 4004  (class class class)co 5875   R.cnr 7296   0Rc0r 7297   1Rc1r 7298    .R cmr 7301    <R cltr 7302   RRcr 7810   0cc0 7811   1c1 7812    <RR cltrr 7815    x. cmul 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-imp 7468  df-iltp 7469  df-enr 7725  df-nr 7726  df-plr 7727  df-mr 7728  df-ltr 7729  df-0r 7730  df-1r 7731  df-m1r 7732  df-c 7817  df-0 7818  df-1 7819  df-r 7821  df-mul 7823  df-lt 7824
This theorem is referenced by:  rereceu  7888  recriota  7889
  Copyright terms: Public domain W3C validator