ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex Unicode version

Theorem axprecex 7712
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7754.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem axprecex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7660 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2423 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 183 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 breq2 3941 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( 0 
<RR  <. y ,  0R >.  <->  0  <RR  A ) )
5 oveq1 5789 . . . . . . 7  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2149 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76anbi2d 460 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
87rexbidv 2439 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  (
0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
94, 8imbi12d 233 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) )  <->  ( 0 
<RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) ) )
10 df-0 7651 . . . . . 6  |-  0  =  <. 0R ,  0R >.
1110breq1i 3944 . . . . 5  |-  ( 0 
<RR  <. y ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. y ,  0R >. )
12 ltresr 7671 . . . . 5  |-  ( <. 0R ,  0R >.  <RR  <. y ,  0R >.  <->  0R  <R  y )
1311, 12bitri 183 . . . 4  |-  ( 0 
<RR  <. y ,  0R >.  <-> 
0R  <R  y )
14 recexgt0sr 7605 . . . . 5  |-  ( 0R 
<R  y  ->  E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z )  =  1R ) )
15 opelreal 7659 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1615anbi1i 454 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
1710breq1i 3944 . . . . . . . . . . . . 13  |-  ( 0 
<RR  <. z ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. z ,  0R >. )
18 ltresr 7671 . . . . . . . . . . . . 13  |-  ( <. 0R ,  0R >.  <RR  <. z ,  0R >.  <->  0R  <R  z )
1917, 18bitri 183 . . . . . . . . . . . 12  |-  ( 0 
<RR  <. z ,  0R >.  <-> 
0R  <R  z )
2019a1i 9 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( 0  <RR  <. z ,  0R >.  <->  0R  <R  z ) )
21 mulresr 7670 . . . . . . . . . . . . 13  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2221eqeq1d 2149 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
23 df-1 7652 . . . . . . . . . . . . . 14  |-  1  =  <. 1R ,  0R >.
2423eqeq2i 2151 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
25 eqid 2140 . . . . . . . . . . . . . 14  |-  0R  =  0R
26 1sr 7583 . . . . . . . . . . . . . . 15  |-  1R  e.  R.
27 0r 7582 . . . . . . . . . . . . . . 15  |-  0R  e.  R.
28 opthg2 4169 . . . . . . . . . . . . . . 15  |-  ( ( 1R  e.  R.  /\  0R  e.  R. )  -> 
( <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >.  <-> 
( ( y  .R  z )  =  1R  /\  0R  =  0R ) ) )
2926, 27, 28mp2an 423 . . . . . . . . . . . . . 14  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
( y  .R  z
)  =  1R  /\  0R  =  0R )
)
3025, 29mpbiran2 926 . . . . . . . . . . . . 13  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
3124, 30bitri 183 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
3222, 31syl6bb 195 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
3320, 32anbi12d 465 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) )
3433pm5.32da 448 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )  <-> 
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
) ) )
3516, 34syl5bb 191 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  (
0  <RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  <->  ( z  e.  R.  /\  ( 0R 
<R  z  /\  (
y  .R  z )  =  1R ) ) ) )
36 breq2 3941 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( 0  <RR  x  <->  0  <RR  <. z ,  0R >. ) )
37 oveq2 5790 . . . . . . . . . . 11  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3837eqeq1d 2149 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3936, 38anbi12d 465 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( 0 
<RR  x  /\  ( <.
y ,  0R >.  x.  x )  =  1 )  <->  ( 0  <RR  <.
z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) ) )
4039rspcev 2793 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( 0 
<RR  <. z ,  0R >.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) )
4135, 40syl6bir 163 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )
)  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4241expd 256 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) ) )
4342rexlimdv 2551 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( 0R  <R  z  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
4414, 43syl5 32 . . . 4  |-  ( y  e.  R.  ->  ( 0R  <R  y  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x
)  =  1 ) ) )
4513, 44syl5bi 151 . . 3  |-  ( y  e.  R.  ->  (
0  <RR  <. y ,  0R >.  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
463, 9, 45gencl 2721 . 2  |-  ( A  e.  RR  ->  (
0  <RR  A  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) ) )
4746imp 123 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   E.wrex 2418   <.cop 3535   class class class wbr 3937  (class class class)co 5782   R.cnr 7129   0Rc0r 7130   1Rc1r 7131    .R cmr 7134    <R cltr 7135   RRcr 7643   0cc0 7644   1c1 7645    <RR cltrr 7648    x. cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-iltp 7302  df-enr 7558  df-nr 7559  df-plr 7560  df-mr 7561  df-ltr 7562  df-0r 7563  df-1r 7564  df-m1r 7565  df-c 7650  df-0 7651  df-1 7652  df-r 7654  df-mul 7656  df-lt 7657
This theorem is referenced by:  rereceu  7721  recriota  7722
  Copyright terms: Public domain W3C validator