| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axprecex | Unicode version | ||
| Description: Existence of positive
reciprocal of positive real number. Axiom for
real and complex numbers, derived from set theory. This
construction-dependent theorem should not be referenced directly;
instead, use ax-precex 8006.
In treatments which assume excluded middle, the |
| Ref | Expression |
|---|---|
| axprecex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7912 |
. . . 4
| |
| 2 | df-rex 2481 |
. . . 4
| |
| 3 | 1, 2 | bitri 184 |
. . 3
|
| 4 | breq2 4038 |
. . . 4
| |
| 5 | oveq1 5932 |
. . . . . . 7
| |
| 6 | 5 | eqeq1d 2205 |
. . . . . 6
|
| 7 | 6 | anbi2d 464 |
. . . . 5
|
| 8 | 7 | rexbidv 2498 |
. . . 4
|
| 9 | 4, 8 | imbi12d 234 |
. . 3
|
| 10 | df-0 7903 |
. . . . . 6
| |
| 11 | 10 | breq1i 4041 |
. . . . 5
|
| 12 | ltresr 7923 |
. . . . 5
| |
| 13 | 11, 12 | bitri 184 |
. . . 4
|
| 14 | recexgt0sr 7857 |
. . . . 5
| |
| 15 | opelreal 7911 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi1i 458 |
. . . . . . . . 9
|
| 17 | 10 | breq1i 4041 |
. . . . . . . . . . . . 13
|
| 18 | ltresr 7923 |
. . . . . . . . . . . . 13
| |
| 19 | 17, 18 | bitri 184 |
. . . . . . . . . . . 12
|
| 20 | 19 | a1i 9 |
. . . . . . . . . . 11
|
| 21 | mulresr 7922 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eqeq1d 2205 |
. . . . . . . . . . . 12
|
| 23 | df-1 7904 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | eqeq2i 2207 |
. . . . . . . . . . . . 13
|
| 25 | eqid 2196 |
. . . . . . . . . . . . . 14
| |
| 26 | 1sr 7835 |
. . . . . . . . . . . . . . 15
| |
| 27 | 0r 7834 |
. . . . . . . . . . . . . . 15
| |
| 28 | opthg2 4273 |
. . . . . . . . . . . . . . 15
| |
| 29 | 26, 27, 28 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 30 | 25, 29 | mpbiran2 943 |
. . . . . . . . . . . . 13
|
| 31 | 24, 30 | bitri 184 |
. . . . . . . . . . . 12
|
| 32 | 22, 31 | bitrdi 196 |
. . . . . . . . . . 11
|
| 33 | 20, 32 | anbi12d 473 |
. . . . . . . . . 10
|
| 34 | 33 | pm5.32da 452 |
. . . . . . . . 9
|
| 35 | 16, 34 | bitrid 192 |
. . . . . . . 8
|
| 36 | breq2 4038 |
. . . . . . . . . 10
| |
| 37 | oveq2 5933 |
. . . . . . . . . . 11
| |
| 38 | 37 | eqeq1d 2205 |
. . . . . . . . . 10
|
| 39 | 36, 38 | anbi12d 473 |
. . . . . . . . 9
|
| 40 | 39 | rspcev 2868 |
. . . . . . . 8
|
| 41 | 35, 40 | biimtrrdi 164 |
. . . . . . 7
|
| 42 | 41 | expd 258 |
. . . . . 6
|
| 43 | 42 | rexlimdv 2613 |
. . . . 5
|
| 44 | 14, 43 | syl5 32 |
. . . 4
|
| 45 | 13, 44 | biimtrid 152 |
. . 3
|
| 46 | 3, 9, 45 | gencl 2795 |
. 2
|
| 47 | 46 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-imp 7553 df-iltp 7554 df-enr 7810 df-nr 7811 df-plr 7812 df-mr 7813 df-ltr 7814 df-0r 7815 df-1r 7816 df-m1r 7817 df-c 7902 df-0 7903 df-1 7904 df-r 7906 df-mul 7908 df-lt 7909 |
| This theorem is referenced by: rereceu 7973 recriota 7974 |
| Copyright terms: Public domain | W3C validator |