ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neibl Unicode version

Theorem neibl 14811
Description: The neighborhoods around a point  P of a metric space are those subsets containing a ball around  P. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
neibl  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
Distinct variable groups:    D, r    J, r    N, r    P, r    X, r

Proof of Theorem neibl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . 5  |-  J  =  ( MetOpen `  D )
21mopntop 14764 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
32adantr 276 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  J  e.  Top )
41mopnuni 14765 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
54eleq2d 2266 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( P  e.  X  <->  P  e.  U. J ) )
65biimpa 296 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  P  e.  U. J )
7 eqid 2196 . . . 4  |-  U. J  =  U. J
87isneip 14466 . . 3  |-  ( ( J  e.  Top  /\  P  e.  U. J )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_ 
U. J  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
93, 6, 8syl2anc 411 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_ 
U. J  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
104sseq2d 3214 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( N  C_  X  <->  N  C_  U. J
) )
1110adantr 276 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( N  C_  X  <->  N  C_  U. J
) )
1211anbi1d 465 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( ( N  C_  X  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) )  <-> 
( N  C_  U. J  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
131mopni2 14803 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  J  /\  P  e.  y
)  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  y
)
14 sstr2 3191 . . . . . . . . . . 11  |-  ( ( P ( ball `  D
) r )  C_  y  ->  ( y  C_  N  ->  ( P (
ball `  D )
r )  C_  N
) )
1514com12 30 . . . . . . . . . 10  |-  ( y 
C_  N  ->  (
( P ( ball `  D ) r ) 
C_  y  ->  ( P ( ball `  D
) r )  C_  N ) )
1615reximdv 2598 . . . . . . . . 9  |-  ( y 
C_  N  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  y  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) )
1713, 16syl5com 29 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  J  /\  P  e.  y
)  ->  ( y  C_  N  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) )
18173exp 1204 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  (
y  e.  J  -> 
( P  e.  y  ->  ( y  C_  N  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) ) ) )
1918imp4a 349 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  (
y  e.  J  -> 
( ( P  e.  y  /\  y  C_  N )  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
2019ad2antrr 488 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  (
y  e.  J  -> 
( ( P  e.  y  /\  y  C_  N )  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
2120rexlimdv 2613 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  ( E. y  e.  J  ( P  e.  y  /\  y  C_  N )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) )
22 rpxr 9753 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e. 
RR* )
231blopn 14810 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR* )  ->  ( P ( ball `  D ) r )  e.  J )
2422, 23syl3an3 1284 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  ( P ( ball `  D ) r )  e.  J )
25 blcntr 14736 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  P  e.  ( P ( ball `  D
) r ) )
26 eleq2 2260 . . . . . . . . . . 11  |-  ( y  =  ( P (
ball `  D )
r )  ->  ( P  e.  y  <->  P  e.  ( P ( ball `  D
) r ) ) )
27 sseq1 3207 . . . . . . . . . . 11  |-  ( y  =  ( P (
ball `  D )
r )  ->  (
y  C_  N  <->  ( P
( ball `  D )
r )  C_  N
) )
2826, 27anbi12d 473 . . . . . . . . . 10  |-  ( y  =  ( P (
ball `  D )
r )  ->  (
( P  e.  y  /\  y  C_  N
)  <->  ( P  e.  ( P ( ball `  D ) r )  /\  ( P (
ball `  D )
r )  C_  N
) ) )
2928rspcev 2868 . . . . . . . . 9  |-  ( ( ( P ( ball `  D ) r )  e.  J  /\  ( P  e.  ( P
( ball `  D )
r )  /\  ( P ( ball `  D
) r )  C_  N ) )  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) )
3029expr 375 . . . . . . . 8  |-  ( ( ( P ( ball `  D ) r )  e.  J  /\  P  e.  ( P ( ball `  D ) r ) )  ->  ( ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
3124, 25, 30syl2anc 411 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  ( ( P (
ball `  D )
r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
32313expia 1207 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( r  e.  RR+  ->  ( ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
3332rexlimdv 2613 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
3433adantr 276 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
3521, 34impbid 129 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  ( E. y  e.  J  ( P  e.  y  /\  y  C_  N )  <->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) )
3635pm5.32da 452 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( ( N  C_  X  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) )  <-> 
( N  C_  X  /\  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) ) )
379, 12, 363bitr2d 216 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   {csn 3623   U.cuni 3840   ` cfv 5259  (class class class)co 5925   RR*cxr 8077   RR+crp 9745   *Metcxmet 14168   ballcbl 14170   MetOpencmopn 14173   Topctop 14317   neicnei 14458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-nei 14459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator