ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnuni GIF version

Theorem rnuni 5116
Description: The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rnuni ran 𝐴 = 𝑥𝐴 ran 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnuni
StepHypRef Expression
1 uniiun 3998 . . 3 𝐴 = 𝑥𝐴 𝑥
21rneqi 4928 . 2 ran 𝐴 = ran 𝑥𝐴 𝑥
3 rniun 5115 . 2 ran 𝑥𝐴 𝑥 = 𝑥𝐴 ran 𝑥
42, 3eqtri 2230 1 ran 𝐴 = 𝑥𝐴 ran 𝑥
Colors of variables: wff set class
Syntax hints:   = wceq 1375   cuni 3867   ciun 3944  ran crn 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by:  ennnfonelemf1  12955
  Copyright terms: Public domain W3C validator