ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaundi Unicode version

Theorem imaundi 5083
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi  |-  ( A
" ( B  u.  C ) )  =  ( ( A " B )  u.  ( A " C ) )

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 4960 . . . 4  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
21rneqi 4895 . . 3  |-  ran  ( A  |`  ( B  u.  C ) )  =  ran  ( ( A  |`  B )  u.  ( A  |`  C ) )
3 rnun 5079 . . 3  |-  ran  (
( A  |`  B )  u.  ( A  |`  C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
42, 3eqtri 2217 . 2  |-  ran  ( A  |`  ( B  u.  C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
5 df-ima 4677 . 2  |-  ( A
" ( B  u.  C ) )  =  ran  ( A  |`  ( B  u.  C
) )
6 df-ima 4677 . . 3  |-  ( A
" B )  =  ran  ( A  |`  B )
7 df-ima 4677 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
86, 7uneq12i 3316 . 2  |-  ( ( A " B )  u.  ( A " C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
94, 5, 83eqtr4i 2227 1  |-  ( A
" ( B  u.  C ) )  =  ( ( A " B )  u.  ( A " C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155   ran crn 4665    |` cres 4666   "cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  fnimapr  5624  fiintim  7001  fidcenumlemrks  7028  fidcenumlemr  7030  resunimafz0  10940  ennnfonelemhf1o  12655
  Copyright terms: Public domain W3C validator