ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rniun Unicode version

Theorem rniun 4949
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rniun  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B

Proof of Theorem rniun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2709 . . . 4  |-  ( E. x  e.  A  E. y <. y ,  z
>.  e.  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2689 . . . . . 6  |-  z  e. 
_V
32elrn2 4781 . . . . 5  |-  ( z  e.  ran  B  <->  E. y <. y ,  z >.  e.  B )
43rexbii 2442 . . . 4  |-  ( E. x  e.  A  z  e.  ran  B  <->  E. x  e.  A  E. y <. y ,  z >.  e.  B )
5 eliun 3817 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1584 . . . 4  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 212 . . 3  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  ran  B )
82elrn2 4781 . . 3  |-  ( z  e.  ran  U_ x  e.  A  B  <->  E. y <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3817 . . 3  |-  ( z  e.  U_ x  e.  A  ran  B  <->  E. x  e.  A  z  e.  ran  B )
107, 8, 93bitr4i 211 . 2  |-  ( z  e.  ran  U_ x  e.  A  B  <->  z  e.  U_ x  e.  A  ran  B )
1110eqriv 2136 1  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B
Colors of variables: wff set class
Syntax hints:    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   <.cop 3530   U_ciun 3813   ran crn 4540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-iun 3815  df-br 3930  df-opab 3990  df-cnv 4547  df-dm 4549  df-rn 4550
This theorem is referenced by:  rnuni  4950  fun11iun  5388  ennnfonelemrn  11943
  Copyright terms: Public domain W3C validator