ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rniun Unicode version

Theorem rniun 5093
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rniun  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B

Proof of Theorem rniun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2795 . . . 4  |-  ( E. x  e.  A  E. y <. y ,  z
>.  e.  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2775 . . . . . 6  |-  z  e. 
_V
32elrn2 4920 . . . . 5  |-  ( z  e.  ran  B  <->  E. y <. y ,  z >.  e.  B )
43rexbii 2513 . . . 4  |-  ( E. x  e.  A  z  e.  ran  B  <->  E. x  e.  A  E. y <. y ,  z >.  e.  B )
5 eliun 3931 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1628 . . . 4  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 213 . . 3  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  ran  B )
82elrn2 4920 . . 3  |-  ( z  e.  ran  U_ x  e.  A  B  <->  E. y <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3931 . . 3  |-  ( z  e.  U_ x  e.  A  ran  B  <->  E. x  e.  A  z  e.  ran  B )
107, 8, 93bitr4i 212 . 2  |-  ( z  e.  ran  U_ x  e.  A  B  <->  z  e.  U_ x  e.  A  ran  B )
1110eqriv 2202 1  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   <.cop 3636   U_ciun 3927   ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iun 3929  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  rnuni  5094  fun11iun  5543  ennnfonelemrn  12790
  Copyright terms: Public domain W3C validator