ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rniun Unicode version

Theorem rniun 5051
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rniun  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B

Proof of Theorem rniun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2772 . . . 4  |-  ( E. x  e.  A  E. y <. y ,  z
>.  e.  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2752 . . . . . 6  |-  z  e. 
_V
32elrn2 4881 . . . . 5  |-  ( z  e.  ran  B  <->  E. y <. y ,  z >.  e.  B )
43rexbii 2494 . . . 4  |-  ( E. x  e.  A  z  e.  ran  B  <->  E. x  e.  A  E. y <. y ,  z >.  e.  B )
5 eliun 3902 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1615 . . . 4  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 213 . . 3  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  ran  B )
82elrn2 4881 . . 3  |-  ( z  e.  ran  U_ x  e.  A  B  <->  E. y <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3902 . . 3  |-  ( z  e.  U_ x  e.  A  ran  B  <->  E. x  e.  A  z  e.  ran  B )
107, 8, 93bitr4i 212 . 2  |-  ( z  e.  ran  U_ x  e.  A  B  <->  z  e.  U_ x  e.  A  ran  B )
1110eqriv 2184 1  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B
Colors of variables: wff set class
Syntax hints:    = wceq 1363   E.wex 1502    e. wcel 2158   E.wrex 2466   <.cop 3607   U_ciun 3898   ran crn 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-iun 3900  df-br 4016  df-opab 4077  df-cnv 4646  df-dm 4648  df-rn 4649
This theorem is referenced by:  rnuni  5052  fun11iun  5494  ennnfonelemrn  12434
  Copyright terms: Public domain W3C validator