ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rniun Unicode version

Theorem rniun 5139
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rniun  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B

Proof of Theorem rniun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2823 . . . 4  |-  ( E. x  e.  A  E. y <. y ,  z
>.  e.  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2802 . . . . . 6  |-  z  e. 
_V
32elrn2 4966 . . . . 5  |-  ( z  e.  ran  B  <->  E. y <. y ,  z >.  e.  B )
43rexbii 2537 . . . 4  |-  ( E. x  e.  A  z  e.  ran  B  <->  E. x  e.  A  E. y <. y ,  z >.  e.  B )
5 eliun 3969 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1651 . . . 4  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. y E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 213 . . 3  |-  ( E. y <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  ran  B )
82elrn2 4966 . . 3  |-  ( z  e.  ran  U_ x  e.  A  B  <->  E. y <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3969 . . 3  |-  ( z  e.  U_ x  e.  A  ran  B  <->  E. x  e.  A  z  e.  ran  B )
107, 8, 93bitr4i 212 . 2  |-  ( z  e.  ran  U_ x  e.  A  B  <->  z  e.  U_ x  e.  A  ran  B )
1110eqriv 2226 1  |-  ran  U_ x  e.  A  B  =  U_ x  e.  A  ran  B
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   <.cop 3669   U_ciun 3965   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iun 3967  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  rnuni  5140  fun11iun  5593  ennnfonelemrn  12990
  Copyright terms: Public domain W3C validator