ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s1eq Unicode version

Theorem s1eq 11096
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1eq  |-  ( A  =  B  ->  <" A ">  =  <" B "> )

Proof of Theorem s1eq
StepHypRef Expression
1 fveq2 5589 . . . 4  |-  ( A  =  B  ->  (  _I  `  A )  =  (  _I  `  B
) )
21opeq2d 3832 . . 3  |-  ( A  =  B  ->  <. 0 ,  (  _I  `  A
) >.  =  <. 0 ,  (  _I  `  B
) >. )
32sneqd 3651 . 2  |-  ( A  =  B  ->  { <. 0 ,  (  _I  `  A ) >. }  =  { <. 0 ,  (  _I  `  B )
>. } )
4 df-s1 11093 . 2  |-  <" A ">  =  { <. 0 ,  (  _I  `  A ) >. }
5 df-s1 11093 . 2  |-  <" B ">  =  { <. 0 ,  (  _I  `  B ) >. }
63, 4, 53eqtr4g 2264 1  |-  ( A  =  B  ->  <" A ">  =  <" B "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   {csn 3638   <.cop 3641    _I cid 4343   ` cfv 5280   0cc0 7945   <"cs1 11092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-s1 11093
This theorem is referenced by:  s1eqd  11097  wrdl1exs1  11106  wrdl1s1  11107  ccats1pfxeqrex  11191  wrdind  11198  wrd2ind  11199
  Copyright terms: Public domain W3C validator