ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s1rn Unicode version

Theorem s1rn 11095
Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.)
Assertion
Ref Expression
s1rn  |-  ( A  e.  V  ->  ran  <" A ">  =  { A } )

Proof of Theorem s1rn
StepHypRef Expression
1 s1val 11094 . . 3  |-  ( A  e.  V  ->  <" A ">  =  { <. 0 ,  A >. } )
21rneqd 4916 . 2  |-  ( A  e.  V  ->  ran  <" A ">  =  ran  { <. 0 ,  A >. } )
3 c0ex 8086 . . 3  |-  0  e.  _V
43rnsnop 5172 . 2  |-  ran  { <. 0 ,  A >. }  =  { A }
52, 4eqtrdi 2255 1  |-  ( A  e.  V  ->  ran  <" A ">  =  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   {csn 3638   <.cop 3641   ran crn 4684   0cc0 7945   <"cs1 11092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-mulcl 8043  ax-i2m1 8050
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fv 5288  df-s1 11093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator