ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdl1exs1 Unicode version

Theorem wrdl1exs1 11106
Description: A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021.)
Assertion
Ref Expression
wrdl1exs1  |-  ( ( W  e. Word  S  /\  ( `  W )  =  1 )  ->  E. s  e.  S  W  =  <" s "> )
Distinct variable groups:    S, s    W, s

Proof of Theorem wrdl1exs1
StepHypRef Expression
1 1le1 8665 . . . 4  |-  1  <_  1
2 breq2 4055 . . . 4  |-  ( ( `  W )  =  1  ->  ( 1  <_ 
( `  W )  <->  1  <_  1 ) )
31, 2mpbiri 168 . . 3  |-  ( ( `  W )  =  1  ->  1  <_  ( `  W ) )
4 wrdsymb1 11052 . . 3  |-  ( ( W  e. Word  S  /\  1  <_  ( `  W )
)  ->  ( W `  0 )  e.  S )
53, 4sylan2 286 . 2  |-  ( ( W  e. Word  S  /\  ( `  W )  =  1 )  ->  ( W `  0 )  e.  S )
6 s1eq 11096 . . . 4  |-  ( s  =  ( W ` 
0 )  ->  <" s ">  =  <" ( W `  0 ) "> )
76adantl 277 . . 3  |-  ( ( ( W  e. Word  S  /\  ( `  W )  =  1 )  /\  s  =  ( W `  0 ) )  ->  <" s ">  =  <" ( W `  0 ) "> )
87eqeq2d 2218 . 2  |-  ( ( ( W  e. Word  S  /\  ( `  W )  =  1 )  /\  s  =  ( W `  0 ) )  ->  ( W  = 
<" s ">  <->  W  =  <" ( W `
 0 ) "> ) )
9 eqs1 11105 . 2  |-  ( ( W  e. Word  S  /\  ( `  W )  =  1 )  ->  W  =  <" ( W `
 0 ) "> )
105, 8, 9rspcedvd 2887 1  |-  ( ( W  e. Word  S  /\  ( `  W )  =  1 )  ->  E. s  e.  S  W  =  <" s "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4051   ` cfv 5280   0cc0 7945   1c1 7946    <_ cle 8128  ♯chash 10942  Word cword 11016   <"cs1 11092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-ihash 10943  df-word 11017  df-s1 11093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator