ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d Unicode version

Theorem opeq2d 3815
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
opeq2d  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 opeq2 3809 . 2  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
31, 2syl 14 1  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by:  tfr1onlemaccex  6406  tfrcllemaccex  6419  fundmen  6865  exmidapne  7327  recexnq  7457  suplocexprlemex  7789  elreal2  7897  frecuzrdgrrn  10500  frec2uzrdg  10501  frecuzrdgrcl  10502  frecuzrdgsuc  10506  frecuzrdgrclt  10507  frecuzrdgg  10508  frecuzrdgsuctlem  10515  seqeq2  10543  seqeq3  10544  iseqvalcbv  10551  seq3val  10552  seqvalcd  10553  eucalgval  12222  ennnfonelemp1  12623  ennnfonelemnn0  12639  strsetsid  12711  ressvalsets  12742  strressid  12749  ressinbasd  12752  ressressg  12753  prdsex  12940  imasex  12948  imasival  12949  imasaddvallemg  12958  xpsfval  12991  xpsval  12995  mgpvalg  13479  mgpress  13487  ring1  13615  opprvalg  13625  sraval  13993  zlmval  14183  znval  14192  znval2  14194  psrval  14220
  Copyright terms: Public domain W3C validator