ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d Unicode version

Theorem opeq2d 3864
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
opeq2d  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 opeq2 3858 . 2  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
31, 2syl 14 1  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  tfr1onlemaccex  6494  tfrcllemaccex  6507  fundmen  6959  exmidapne  7446  recexnq  7577  suplocexprlemex  7909  elreal2  8017  frecuzrdgrrn  10630  frec2uzrdg  10631  frecuzrdgrcl  10632  frecuzrdgsuc  10636  frecuzrdgrclt  10637  frecuzrdgg  10638  frecuzrdgsuctlem  10645  seqeq2  10673  seqeq3  10674  iseqvalcbv  10681  seq3val  10682  seqvalcd  10683  s1val  11150  s1eq  11152  s1prc  11156  swrdlsw  11201  pfxpfx  11240  swrdccat  11267  swrdccat3blem  11271  swrdccat3b  11272  pfxccatin12d  11277  eucalgval  12576  ennnfonelemp1  12977  ennnfonelemnn0  12993  strsetsid  13065  ressvalsets  13097  strressid  13104  ressinbasd  13107  ressressg  13108  prdsex  13302  prdsval  13306  imasex  13338  imasival  13339  imasaddvallemg  13348  xpsfval  13381  xpsval  13385  mgpvalg  13886  mgpress  13894  ring1  14022  opprvalg  14032  sraval  14401  zlmval  14591  znval  14600  znval2  14602  psrval  14630
  Copyright terms: Public domain W3C validator