ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d Unicode version

Theorem opeq2d 3765
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
opeq2d  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 opeq2 3759 . 2  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
31, 2syl 14 1  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  tfr1onlemaccex  6316  tfrcllemaccex  6329  fundmen  6772  recexnq  7331  suplocexprlemex  7663  elreal2  7771  frecuzrdgrrn  10343  frec2uzrdg  10344  frecuzrdgrcl  10345  frecuzrdgsuc  10349  frecuzrdgrclt  10350  frecuzrdgg  10351  frecuzrdgsuctlem  10358  seqeq2  10384  seqeq3  10385  iseqvalcbv  10392  seq3val  10393  seqvalcd  10394  eucalgval  11986  ennnfonelemp1  12339  ennnfonelemnn0  12355  strsetsid  12427  ressid2  12454  ressval2  12455
  Copyright terms: Public domain W3C validator