ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d Unicode version

Theorem opeq2d 3840
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
opeq2d  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 opeq2 3834 . 2  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
31, 2syl 14 1  |-  ( ph  -> 
<. C ,  A >.  = 
<. C ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  tfr1onlemaccex  6457  tfrcllemaccex  6470  fundmen  6922  exmidapne  7407  recexnq  7538  suplocexprlemex  7870  elreal2  7978  frecuzrdgrrn  10590  frec2uzrdg  10591  frecuzrdgrcl  10592  frecuzrdgsuc  10596  frecuzrdgrclt  10597  frecuzrdgg  10598  frecuzrdgsuctlem  10605  seqeq2  10633  seqeq3  10634  iseqvalcbv  10641  seq3val  10642  seqvalcd  10643  s1val  11109  s1eq  11111  s1prc  11115  swrdlsw  11160  pfxpfx  11199  swrdccat  11226  swrdccat3blem  11230  swrdccat3b  11231  pfxccatin12d  11236  eucalgval  12491  ennnfonelemp1  12892  ennnfonelemnn0  12908  strsetsid  12980  ressvalsets  13011  strressid  13018  ressinbasd  13021  ressressg  13022  prdsex  13216  prdsval  13220  imasex  13252  imasival  13253  imasaddvallemg  13262  xpsfval  13295  xpsval  13299  mgpvalg  13800  mgpress  13808  ring1  13936  opprvalg  13946  sraval  14314  zlmval  14504  znval  14513  znval2  14515  psrval  14543
  Copyright terms: Public domain W3C validator