ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuccatpfxs1lem Unicode version

Theorem reuccatpfxs1lem 11237
Description: Lemma for reuccatpfxs1 11238. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
reuccatpfxs1lem  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  /\  A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  U  =  ( W ++  <" S "> ) ) )
Distinct variable groups:    S, s    x, U    V, s, x    W, s, x    X, s, x
Allowed substitution hints:    S( x)    U( s)

Proof of Theorem reuccatpfxs1lem
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eleq1 2270 . . . . . . 7  |-  ( x  =  U  ->  (
x  e. Word  V  <->  U  e. Word  V ) )
2 fveqeq2 5608 . . . . . . 7  |-  ( x  =  U  ->  (
( `  x )  =  ( ( `  W
)  +  1 )  <-> 
( `  U )  =  ( ( `  W
)  +  1 ) ) )
31, 2anbi12d 473 . . . . . 6  |-  ( x  =  U  ->  (
( x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) )  <->  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) ) )
43rspcv 2880 . . . . 5  |-  ( U  e.  X  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) )  ->  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) ) )
54adantl 277 . . . 4  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) )  ->  ( U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) ) ) )
6 simpl 109 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  W  e. Word  V )
76adantr 276 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  ->  W  e. Word  V )
8 simpl 109 . . . . . . . . 9  |-  ( ( U  e. Word  V  /\  ( `  U )  =  ( ( `  W
)  +  1 ) )  ->  U  e. Word  V )
98adantl 277 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  ->  U  e. Word  V )
10 simprr 531 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( `  U )  =  ( ( `  W
)  +  1 ) )
11 ccats1pfxeqrex 11206 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( `  W
) )  ->  E. u  e.  V  U  =  ( W ++  <" u "> ) ) )
127, 9, 10, 11syl3anc 1250 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  E. u  e.  V  U  =  ( W ++  <" u "> ) ) )
13 s1eq 11111 . . . . . . . . . . . . . . . 16  |-  ( s  =  u  ->  <" s ">  =  <" u "> )
1413oveq2d 5983 . . . . . . . . . . . . . . 15  |-  ( s  =  u  ->  ( W ++  <" s "> )  =  ( W ++  <" u "> ) )
1514eleq1d 2276 . . . . . . . . . . . . . 14  |-  ( s  =  u  ->  (
( W ++  <" s "> )  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
16 eqeq2 2217 . . . . . . . . . . . . . 14  |-  ( s  =  u  ->  ( S  =  s  <->  S  =  u ) )
1715, 16imbi12d 234 . . . . . . . . . . . . 13  |-  ( s  =  u  ->  (
( ( W ++  <" s "> )  e.  X  ->  S  =  s )  <->  ( ( W ++  <" u "> )  e.  X  ->  S  =  u ) ) )
1817rspcv 2880 . . . . . . . . . . . 12  |-  ( u  e.  V  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  (
( W ++  <" u "> )  e.  X  ->  S  =  u ) ) )
19 eleq1 2270 . . . . . . . . . . . . . 14  |-  ( U  =  ( W ++  <" u "> )  ->  ( U  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
20 id 19 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( ( W ++ 
<" u "> )  e.  X  ->  S  =  u ) )
2120imp 124 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  S  =  u )
2221eqcomd 2213 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  u  =  S )
2322s1eqd 11112 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  <" u ">  =  <" S "> )
2423oveq2d 5983 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( W ++  <" u "> )  =  ( W ++  <" S "> ) )
2524eqeq2d 2219 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( U  =  ( W ++  <" u "> )  <->  U  =  ( W ++  <" S "> )
) )
2625biimpd 144 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++ 
<" S "> ) ) )
2726ex 115 . . . . . . . . . . . . . . 15  |-  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( ( W ++ 
<" u "> )  e.  X  ->  ( U  =  ( W ++ 
<" u "> )  ->  U  =  ( W ++  <" S "> ) ) ) )
2827com13 80 . . . . . . . . . . . . . 14  |-  ( U  =  ( W ++  <" u "> )  ->  ( ( W ++  <" u "> )  e.  X  ->  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  U  =  ( W ++  <" S "> ) ) ) )
2919, 28sylbid 150 . . . . . . . . . . . . 13  |-  ( U  =  ( W ++  <" u "> )  ->  ( U  e.  X  ->  ( ( ( W ++ 
<" u "> )  e.  X  ->  S  =  u )  ->  U  =  ( W ++  <" S "> ) ) ) )
3029com3l 81 . . . . . . . . . . . 12  |-  ( U  e.  X  ->  (
( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++  <" S "> ) ) ) )
3118, 30sylan9r 410 . . . . . . . . . . 11  |-  ( ( U  e.  X  /\  u  e.  V )  ->  ( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++  <" S "> )
) ) )
3231com23 78 . . . . . . . . . 10  |-  ( ( U  e.  X  /\  u  e.  V )  ->  ( U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3332rexlimdva 2625 . . . . . . . . 9  |-  ( U  e.  X  ->  ( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> ) ) ) )
3433adantl 277 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3534adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3612, 35syld 45 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  ( A. s  e.  V  (
( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> ) ) ) )
3736com23 78 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  U  =  ( W ++  <" S "> ) ) ) )
3837ex 115 . . . 4  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  ( W  =  ( U prefix  ( `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
395, 38syld 45 . . 3  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  ( W  =  ( U prefix  ( `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
4039com23 78 . 2  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
41403imp 1196 1  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  /\  A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  U  =  ( W ++  <" S "> ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963  ♯chash 10957  Word cword 11031   ++ cconcat 11084   <"cs1 11107   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-lsw 11076  df-concat 11085  df-s1 11108  df-substr 11137  df-pfx 11164
This theorem is referenced by:  reuccatpfxs1  11238
  Copyright terms: Public domain W3C validator