ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuccatpfxs1lem Unicode version

Theorem reuccatpfxs1lem 11273
Description: Lemma for reuccatpfxs1 11274. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
reuccatpfxs1lem  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  /\  A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  U  =  ( W ++  <" S "> ) ) )
Distinct variable groups:    S, s    x, U    V, s, x    W, s, x    X, s, x
Allowed substitution hints:    S( x)    U( s)

Proof of Theorem reuccatpfxs1lem
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . . . . . . 7  |-  ( x  =  U  ->  (
x  e. Word  V  <->  U  e. Word  V ) )
2 fveqeq2 5635 . . . . . . 7  |-  ( x  =  U  ->  (
( `  x )  =  ( ( `  W
)  +  1 )  <-> 
( `  U )  =  ( ( `  W
)  +  1 ) ) )
31, 2anbi12d 473 . . . . . 6  |-  ( x  =  U  ->  (
( x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) )  <->  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) ) )
43rspcv 2903 . . . . 5  |-  ( U  e.  X  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) )  ->  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) ) )
54adantl 277 . . . 4  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) )  ->  ( U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) ) ) )
6 simpl 109 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  W  e. Word  V )
76adantr 276 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  ->  W  e. Word  V )
8 simpl 109 . . . . . . . . 9  |-  ( ( U  e. Word  V  /\  ( `  U )  =  ( ( `  W
)  +  1 ) )  ->  U  e. Word  V )
98adantl 277 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  ->  U  e. Word  V )
10 simprr 531 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( `  U )  =  ( ( `  W
)  +  1 ) )
11 ccats1pfxeqrex 11242 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( `  W
) )  ->  E. u  e.  V  U  =  ( W ++  <" u "> ) ) )
127, 9, 10, 11syl3anc 1271 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  E. u  e.  V  U  =  ( W ++  <" u "> ) ) )
13 s1eq 11147 . . . . . . . . . . . . . . . 16  |-  ( s  =  u  ->  <" s ">  =  <" u "> )
1413oveq2d 6016 . . . . . . . . . . . . . . 15  |-  ( s  =  u  ->  ( W ++  <" s "> )  =  ( W ++  <" u "> ) )
1514eleq1d 2298 . . . . . . . . . . . . . 14  |-  ( s  =  u  ->  (
( W ++  <" s "> )  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
16 eqeq2 2239 . . . . . . . . . . . . . 14  |-  ( s  =  u  ->  ( S  =  s  <->  S  =  u ) )
1715, 16imbi12d 234 . . . . . . . . . . . . 13  |-  ( s  =  u  ->  (
( ( W ++  <" s "> )  e.  X  ->  S  =  s )  <->  ( ( W ++  <" u "> )  e.  X  ->  S  =  u ) ) )
1817rspcv 2903 . . . . . . . . . . . 12  |-  ( u  e.  V  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  (
( W ++  <" u "> )  e.  X  ->  S  =  u ) ) )
19 eleq1 2292 . . . . . . . . . . . . . 14  |-  ( U  =  ( W ++  <" u "> )  ->  ( U  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
20 id 19 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( ( W ++ 
<" u "> )  e.  X  ->  S  =  u ) )
2120imp 124 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  S  =  u )
2221eqcomd 2235 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  u  =  S )
2322s1eqd 11148 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  <" u ">  =  <" S "> )
2423oveq2d 6016 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( W ++  <" u "> )  =  ( W ++  <" S "> ) )
2524eqeq2d 2241 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( U  =  ( W ++  <" u "> )  <->  U  =  ( W ++  <" S "> )
) )
2625biimpd 144 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++ 
<" S "> ) ) )
2726ex 115 . . . . . . . . . . . . . . 15  |-  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( ( W ++ 
<" u "> )  e.  X  ->  ( U  =  ( W ++ 
<" u "> )  ->  U  =  ( W ++  <" S "> ) ) ) )
2827com13 80 . . . . . . . . . . . . . 14  |-  ( U  =  ( W ++  <" u "> )  ->  ( ( W ++  <" u "> )  e.  X  ->  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  U  =  ( W ++  <" S "> ) ) ) )
2919, 28sylbid 150 . . . . . . . . . . . . 13  |-  ( U  =  ( W ++  <" u "> )  ->  ( U  e.  X  ->  ( ( ( W ++ 
<" u "> )  e.  X  ->  S  =  u )  ->  U  =  ( W ++  <" S "> ) ) ) )
3029com3l 81 . . . . . . . . . . . 12  |-  ( U  e.  X  ->  (
( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++  <" S "> ) ) ) )
3118, 30sylan9r 410 . . . . . . . . . . 11  |-  ( ( U  e.  X  /\  u  e.  V )  ->  ( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++  <" S "> )
) ) )
3231com23 78 . . . . . . . . . 10  |-  ( ( U  e.  X  /\  u  e.  V )  ->  ( U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3332rexlimdva 2648 . . . . . . . . 9  |-  ( U  e.  X  ->  ( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> ) ) ) )
3433adantl 277 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3534adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3612, 35syld 45 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  ( A. s  e.  V  (
( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> ) ) ) )
3736com23 78 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )  -> 
( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  U  =  ( W ++  <" S "> ) ) ) )
3837ex 115 . . . 4  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  ( W  =  ( U prefix  ( `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
395, 38syld 45 . . 3  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  ( W  =  ( U prefix  ( `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
4039com23 78 . 2  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
41403imp 1217 1  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  /\  A. x  e.  X  ( x  e. Word  V  /\  ( `  x
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( U prefix  ( `  W )
)  ->  U  =  ( W ++  <" S "> ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   ` cfv 5317  (class class class)co 6000   1c1 7996    + caddc 7998  ♯chash 10992  Word cword 11066   ++ cconcat 11120   <"cs1 11143   prefix cpfx 11199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-lsw 11112  df-concat 11121  df-s1 11144  df-substr 11173  df-pfx 11200
This theorem is referenced by:  reuccatpfxs1  11274
  Copyright terms: Public domain W3C validator