| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s1eq | GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eq | ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5626 | . . . 4 ⊢ (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵)) | |
| 2 | 1 | opeq2d 3863 | . . 3 ⊢ (𝐴 = 𝐵 → 〈0, ( I ‘𝐴)〉 = 〈0, ( I ‘𝐵)〉) |
| 3 | 2 | sneqd 3679 | . 2 ⊢ (𝐴 = 𝐵 → {〈0, ( I ‘𝐴)〉} = {〈0, ( I ‘𝐵)〉}) |
| 4 | df-s1 11144 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 5 | df-s1 11144 | . 2 ⊢ 〈“𝐵”〉 = {〈0, ( I ‘𝐵)〉} | |
| 6 | 3, 4, 5 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {csn 3666 〈cop 3669 I cid 4378 ‘cfv 5317 0cc0 7995 〈“cs1 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-s1 11144 |
| This theorem is referenced by: s1eqd 11148 wrdl1exs1 11157 wrdl1s1 11158 ccats1pfxeqrex 11242 wrdind 11249 wrd2ind 11250 reuccatpfxs1lem 11273 reuccatpfxs1 11274 |
| Copyright terms: Public domain | W3C validator |