ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seinxp GIF version

Theorem seinxp 4656
Description: Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
seinxp (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)

Proof of Theorem seinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brinxp 4653 . . . . . 6 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
21ancoms 266 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
32rabbidva 2700 . . . 4 (𝑥𝐴 → {𝑦𝐴𝑦𝑅𝑥} = {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
43eleq1d 2226 . . 3 (𝑥𝐴 → ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V))
54ralbiia 2471 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)
6 df-se 4293 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
7 df-se 4293 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)
85, 6, 73bitr4i 211 1 (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2128  wral 2435  {crab 2439  Vcvv 2712  cin 3101   class class class wbr 3965   Se wse 4289   × cxp 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-se 4293  df-xp 4591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator