Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seinxp | GIF version |
Description: Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
seinxp | ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp 4679 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | |
2 | 1 | ancoms 266 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
3 | 2 | rabbidva 2718 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
4 | 3 | eleq1d 2239 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)) |
5 | 4 | ralbiia 2484 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) |
6 | df-se 4318 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
7 | df-se 4318 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) | |
8 | 5, 6, 7 | 3bitr4i 211 | 1 ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2141 ∀wral 2448 {crab 2452 Vcvv 2730 ∩ cin 3120 class class class wbr 3989 Se wse 4314 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-se 4318 df-xp 4617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |