ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seinxp GIF version

Theorem seinxp 4675
Description: Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
seinxp (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)

Proof of Theorem seinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brinxp 4672 . . . . . 6 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
21ancoms 266 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
32rabbidva 2714 . . . 4 (𝑥𝐴 → {𝑦𝐴𝑦𝑅𝑥} = {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})
43eleq1d 2235 . . 3 (𝑥𝐴 → ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V))
54ralbiia 2480 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)
6 df-se 4311 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
7 df-se 4311 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)
85, 6, 73bitr4i 211 1 (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2136  wral 2444  {crab 2448  Vcvv 2726  cin 3115   class class class wbr 3982   Se wse 4307   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-se 4311  df-xp 4610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator