ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotricim GIF version

Theorem sotricim 4301
Description: One direction of sotritric 4302 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
sotricim ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotricim
StepHypRef Expression
1 sonr 4295 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 471 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
323adant3 1007 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵)
4 breq2 3986 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
54biimprcd 159 . . . . . 6 (𝐵𝑅𝐶 → (𝐵 = 𝐶𝐵𝑅𝐵))
653ad2ant3 1010 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → (𝐵 = 𝐶𝐵𝑅𝐵))
73, 6mtod 653 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵 = 𝐶)
873expia 1195 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐵 = 𝐶))
9 so2nr 4299 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
10 imnan 680 . . . 4 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
119, 10sylibr 133 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
128, 11jcad 305 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵)))
13 ioran 742 . 2 (¬ (𝐵 = 𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵))
1412, 13syl6ibr 161 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982   Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-po 4274  df-iso 4275
This theorem is referenced by:  sotritric  4302
  Copyright terms: Public domain W3C validator