![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sotricim | GIF version |
Description: One direction of sotritric 4175 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
sotricim | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sonr 4168 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | 1 | adantrr 464 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
3 | 2 | 3adant3 966 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵) |
4 | breq2 3871 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
5 | 4 | biimprcd 159 | . . . . . 6 ⊢ (𝐵𝑅𝐶 → (𝐵 = 𝐶 → 𝐵𝑅𝐵)) |
6 | 5 | 3ad2ant3 969 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝐵𝑅𝐶) → (𝐵 = 𝐶 → 𝐵𝑅𝐵)) |
7 | 3, 6 | mtod 627 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵 = 𝐶) |
8 | 7 | 3expia 1148 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐵 = 𝐶)) |
9 | so2nr 4172 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
10 | imnan 662 | . . . 4 ⊢ ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
11 | 9, 10 | sylibr 133 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵)) |
12 | 8, 11 | jcad 302 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵))) |
13 | ioran 707 | . 2 ⊢ (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵)) | |
14 | 12, 13 | syl6ibr 161 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 667 ∧ w3a 927 = wceq 1296 ∈ wcel 1445 class class class wbr 3867 Or wor 4146 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-po 4147 df-iso 4148 |
This theorem is referenced by: sotritric 4175 |
Copyright terms: Public domain | W3C validator |