Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotricim GIF version

Theorem sotricim 4245
 Description: One direction of sotritric 4246 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
sotricim ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotricim
StepHypRef Expression
1 sonr 4239 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 470 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
323adant3 1001 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵)
4 breq2 3933 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
54biimprcd 159 . . . . . 6 (𝐵𝑅𝐶 → (𝐵 = 𝐶𝐵𝑅𝐵))
653ad2ant3 1004 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → (𝐵 = 𝐶𝐵𝑅𝐵))
73, 6mtod 652 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵 = 𝐶)
873expia 1183 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐵 = 𝐶))
9 so2nr 4243 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
10 imnan 679 . . . 4 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
119, 10sylibr 133 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
128, 11jcad 305 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵)))
13 ioran 741 . 2 (¬ (𝐵 = 𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵))
1412, 13syl6ibr 161 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ∨ wo 697   ∧ w3a 962   = wceq 1331   ∈ wcel 1480   class class class wbr 3929   Or wor 4217 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-po 4218  df-iso 4219 This theorem is referenced by:  sotritric  4246
 Copyright terms: Public domain W3C validator