ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotricim GIF version

Theorem sotricim 4354
Description: One direction of sotritric 4355 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
sotricim ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotricim
StepHypRef Expression
1 sonr 4348 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 479 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
323adant3 1019 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵)
4 breq2 4033 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
54biimprcd 160 . . . . . 6 (𝐵𝑅𝐶 → (𝐵 = 𝐶𝐵𝑅𝐵))
653ad2ant3 1022 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → (𝐵 = 𝐶𝐵𝑅𝐵))
73, 6mtod 664 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵 = 𝐶)
873expia 1207 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐵 = 𝐶))
9 so2nr 4352 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
10 imnan 691 . . . 4 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
119, 10sylibr 134 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
128, 11jcad 307 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵)))
13 ioran 753 . 2 (¬ (𝐵 = 𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵))
1412, 13imbitrrdi 162 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029   Or wor 4326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-po 4327  df-iso 4328
This theorem is referenced by:  sotritric  4355
  Copyright terms: Public domain W3C validator