| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssopab2dv | GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| ssopab2dv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ssopab2dv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2dv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | alrimivv 1899 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝜓 → 𝜒)) |
| 3 | ssopab2 4330 | . 2 ⊢ (∀𝑥∀𝑦(𝜓 → 𝜒) → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ⊆ wss 3170 {copab 4112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3176 df-ss 3183 df-opab 4114 |
| This theorem is referenced by: xpss12 4790 coss1 4841 coss2 4842 cnvss 4859 shftfvalg 11204 shftfval 11207 reldvdsrsrg 13929 dvdsrvald 13930 dvdsrex 13935 sslm 14794 |
| Copyright terms: Public domain | W3C validator |