ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2dv GIF version

Theorem ssopab2dv 4323
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ssopab2dv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimivv 1897 . 2 (𝜑 → ∀𝑥𝑦(𝜓𝜒))
3 ssopab2 4320 . 2 (∀𝑥𝑦(𝜓𝜒) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
42, 3syl 14 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1370  wss 3165  {copab 4103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-in 3171  df-ss 3178  df-opab 4105
This theorem is referenced by:  xpss12  4780  coss1  4831  coss2  4832  cnvss  4849  shftfvalg  11048  shftfval  11051  reldvdsrsrg  13772  dvdsrvald  13773  dvdsrex  13778  sslm  14637
  Copyright terms: Public domain W3C validator