ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2dv GIF version

Theorem ssopab2dv 4309
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ssopab2dv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimivv 1886 . 2 (𝜑 → ∀𝑥𝑦(𝜓𝜒))
3 ssopab2 4306 . 2 (∀𝑥𝑦(𝜓𝜒) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
42, 3syl 14 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wss 3153  {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-opab 4091
This theorem is referenced by:  xpss12  4766  coss1  4817  coss2  4818  cnvss  4835  shftfvalg  10962  shftfval  10965  reldvdsrsrg  13588  dvdsrvald  13589  dvdsrex  13594  sslm  14415
  Copyright terms: Public domain W3C validator