| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssopab2dv | GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| ssopab2dv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ssopab2dv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2dv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | alrimivv 1889 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝜓 → 𝜒)) |
| 3 | ssopab2 4311 | . 2 ⊢ (∀𝑥∀𝑦(𝜓 → 𝜒) → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ⊆ wss 3157 {copab 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4096 |
| This theorem is referenced by: xpss12 4771 coss1 4822 coss2 4823 cnvss 4840 shftfvalg 11000 shftfval 11003 reldvdsrsrg 13724 dvdsrvald 13725 dvdsrex 13730 sslm 14567 |
| Copyright terms: Public domain | W3C validator |