ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  svrelfun Unicode version

Theorem svrelfun 5113
Description: A single-valued relation is a function. (See fun2cnv 5112 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
svrelfun  |-  ( Fun 
A  <->  ( Rel  A  /\  Fun  `' `' A
) )

Proof of Theorem svrelfun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 5063 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
2 fun2cnv 5112 . . 3  |-  ( Fun  `' `' A  <->  A. x E* y  x A y )
32anbi2i 446 . 2  |-  ( ( Rel  A  /\  Fun  `' `' A )  <->  ( Rel  A  /\  A. x E* y  x A y ) )
41, 3bitr4i 186 1  |-  ( Fun 
A  <->  ( Rel  A  /\  Fun  `' `' A
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1294   E*wmo 1956   class class class wbr 3867   `'ccnv 4466   Rel wrel 4472   Fun wfun 5043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-fun 5051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator