ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  svrelfun Unicode version

Theorem svrelfun 5323
Description: A single-valued relation is a function. (See fun2cnv 5322 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
svrelfun  |-  ( Fun 
A  <->  ( Rel  A  /\  Fun  `' `' A
) )

Proof of Theorem svrelfun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 5272 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
2 fun2cnv 5322 . . 3  |-  ( Fun  `' `' A  <->  A. x E* y  x A y )
32anbi2i 457 . 2  |-  ( ( Rel  A  /\  Fun  `' `' A )  <->  ( Rel  A  /\  A. x E* y  x A y ) )
41, 3bitr4i 187 1  |-  ( Fun 
A  <->  ( Rel  A  /\  Fun  `' `' A
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362   E*wmo 2046   class class class wbr 4033   `'ccnv 4662   Rel wrel 4668   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-fun 5260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator