ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2cnv Unicode version

Theorem fun2cnv 5251
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that  A is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
fun2cnv  |-  ( Fun  `' `' A  <->  A. x E* y  x A y )
Distinct variable group:    x, y, A

Proof of Theorem fun2cnv
StepHypRef Expression
1 funcnv2 5247 . 2  |-  ( Fun  `' `' A  <->  A. x E* y 
y `' A x )
2 vex 2728 . . . . 5  |-  y  e. 
_V
3 vex 2728 . . . . 5  |-  x  e. 
_V
42, 3brcnv 4786 . . . 4  |-  ( y `' A x  <->  x A
y )
54mobii 2051 . . 3  |-  ( E* y  y `' A x 
<->  E* y  x A y )
65albii 1458 . 2  |-  ( A. x E* y  y `' A x  <->  A. x E* y  x A
y )
71, 6bitri 183 1  |-  ( Fun  `' `' A  <->  A. x E* y  x A y )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341   E*wmo 2015   class class class wbr 3981   `'ccnv 4602   Fun wfun 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-fun 5189
This theorem is referenced by:  svrelfun  5252  fun11  5254
  Copyright terms: Public domain W3C validator