ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2cnv Unicode version

Theorem fun2cnv 5323
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that  A is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
fun2cnv  |-  ( Fun  `' `' A  <->  A. x E* y  x A y )
Distinct variable group:    x, y, A

Proof of Theorem fun2cnv
StepHypRef Expression
1 funcnv2 5319 . 2  |-  ( Fun  `' `' A  <->  A. x E* y 
y `' A x )
2 vex 2766 . . . . 5  |-  y  e. 
_V
3 vex 2766 . . . . 5  |-  x  e. 
_V
42, 3brcnv 4850 . . . 4  |-  ( y `' A x  <->  x A
y )
54mobii 2082 . . 3  |-  ( E* y  y `' A x 
<->  E* y  x A y )
65albii 1484 . 2  |-  ( A. x E* y  y `' A x  <->  A. x E* y  x A
y )
71, 6bitri 184 1  |-  ( Fun  `' `' A  <->  A. x E* y  x A y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   E*wmo 2046   class class class wbr 4034   `'ccnv 4663   Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by:  svrelfun  5324  fun11  5326
  Copyright terms: Public domain W3C validator