ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  svrelfun GIF version

Theorem svrelfun 5300
Description: A single-valued relation is a function. (See fun2cnv 5299 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
svrelfun (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))

Proof of Theorem svrelfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 5249 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 fun2cnv 5299 . . 3 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
32anbi2i 457 . 2 ((Rel 𝐴 ∧ Fun 𝐴) ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
41, 3bitr4i 187 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1362  ∃*wmo 2039   class class class wbr 4018  ccnv 4643  Rel wrel 4649  Fun wfun 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-fun 5237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator