![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > svrelfun | GIF version |
Description: A single-valued relation is a function. (See fun2cnv 5322 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
svrelfun | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 5272 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
2 | fun2cnv 5322 | . . 3 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) | |
3 | 2 | anbi2i 457 | . 2 ⊢ ((Rel 𝐴 ∧ Fun ◡◡𝐴) ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
4 | 1, 3 | bitr4i 187 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃*wmo 2046 class class class wbr 4033 ◡ccnv 4662 Rel wrel 4668 Fun wfun 5252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-fun 5260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |